(Answers calculated by RNC - caveat emptor. Thanks to MRFA for checking them.)
(a) 0.933;
(b) 0.015 ;
(c) 0.015 ;
(d) 0.136;
(e) 0.046

Explanations...
If X is a normally-distributed random variable with mean 23.5 and SD 3.0, then we can invent a variable Z that has a mean of 0 and a $S D$ of $1-a$ 'standard' normal variable' by calculating $Z=(X-$ mean $) / S D$ $=(X-23.5) / 3.0$.

So when we want to ask 'what's the probability that X is less than 28', we can ask instead 'what's the probability that Z is less than $(28-23.5) / 3.0=1.5$ '. We can look up the probability of Z being less than 1.5 from tables of Z; it's 0.933 . So this is also the probability that $X<28$.

If you want to find the probability that $X>30$, that's equivalent to asking 'what's the probability that $Z>$ $(30-23.5) / 3.0=2.167^{\prime}$. From tables, the probability that Z is less than 2.167 is 0.985 , so the probability that Z is bigger than 2.167 (or X is bigger than 30) is $1-0.985=0.015$.

This logic applies to all these examples. When you want to find the probability that $26<X<28$, find the probability that $X<28$, and take away from it the probability that $X<26$.

Q2 IQ (Since you're multiplying probabilities by a large number - $60,000,000-$ you will notice differences between the answers you'd get from your tables and those you'd get with a computer. I'd expect you to use the tables - you'll have to in the exam - but have quoted both answers here.)
(a) 78,000 . The probability $P(\mathrm{IQ}>145)$ is the same as the probability $P(Z>3)$, which is 0.0013 from your tables. So this corresponds to $0.0013 \times 60,000,000=78,000$ people. (If you calculate this more precisely with a computer, you get a probability of $0.001349967 \ldots$ and the answer 80,988 .)
(b) $P(\mathrm{Z}<-1.33)=0.0918$, so the answer's $5,508,000$ (or, with a computer, $5,472,677$).
(c) $P(-1<Z<1)=0.6826$, so the answer's $40,956,000$ (or, with a computer, $40,961,369$).
(a) $\mathrm{SD}=2 \mathrm{~cm}$;
(b) $P(0<Z<0.5)=0.192$;
(c) 227;
(d) 26.08 to 33.92 cm ;
(e) 0.067 ;
(f) 0.933; (g) zero.

To explain (g) a little... the probability of finding a meerkat whose height is the same as a particular value depends on what we mean by 'the same as'! As we become more and more restrictive (the meerkat has to be within a centimetre... millimetre... micron... of the specified height) the probability of finding such a meerkat becomes smaller and smaller. As the range of acceptable heights shrinks to zero, so does the probability, so the probability of finding a meerkat of 'exactly' a given height is zero.

Q4 RCBF (a) 0.0082 ; (b) 0.0164 ; (c) $38 \mathrm{ml} / \mathrm{min}$; (d) 0.809 .
Explanation of (d): a Z score of ± 2.4 is equivalent to $p=0.0164$, so P (make at least one Type I error at p $=0.0164)=1-P($ never make any Type I errors at $p=0.0164$ in 100 comparisons $)=1-(1-0.0164)^{100}$ $=1-0.191=0.809$.

Caveat: the method for finding (d) doesn't take into account the fact that nearby areas are likely to have related blood flows - but then this is a statistics example, not an functional imaging tutorial.

Q5 poem Depends on the food, accommodation and risk aversion; both $P($ lose money $)=0.18$

