(Answers calculated by RNC - caveat emptor.) In some of these examples I'll quote exact p values, rather than just saying ' $p<0.05$ '. Don't worry about this - since you're operating from tables and I'm doing some of these questions on a computer to save time, I can quote exact p values when you can't. If I say ' $p=.03$ ', your tables would show that p $<.05$, but not that $p<.01$. If I say ' $p=.125$ ', your tables would show that the answer is not significant at $p=.01$ (i.e. p $>.01) \ldots$ and so on.

Q1
visual decay
sample covariance $=9.789$
$s_{X}=3.373$
$s_{Y}=3.558$
$r=.816, p=.001$ two-tailed, $n=12$
regression $Y=21.24+0.86 X$

Full working for Q1:

Call blink rate X and decay time Y. Plot your scatterplot as above. There's no obvious non-linear relationship, so doing a linear correlation makes sense. Data points, written as $\{x, y\}$ pairs, are $\{2.1,24.5\},\{10.3$, $29.8\},\{5.9,27.9\},\{10,32.9\},\{0.5,23\},\{4.5,21\},\{3.1,23.2\},\{8.2,25.3\},\{5.2,24.7\},\{9.7,30.7\}$, $\{4.6,26.5\},\{9.7,28.9\}$. You should be able to enter these into your calculator and get \boldsymbol{r} directly. If you were to do it by hand, you'd calculate these:

$$
\begin{gathered}
\sum x y=(2.1 \times 24.5)+(10.3 \times 29.8)+\ldots+(9.7 \times 28.9)=2065.84 \\
\sum x=2.1+10.3+\ldots+9.7=73.8 \\
\sum x^{2}=2.1^{2}+10.3^{2}+\ldots+9.7^{2}=579.04 \\
\sum y=24.5+29.8+\ldots+28.9=318.4 \\
\sum y^{2}=24.5^{2}+29.8^{2}+\ldots+28.9^{2}=8587.48 \\
n=12
\end{gathered}
$$

OK... now for the sample covariance and sample standard deviations. Using the formula sheet:

$$
\begin{gathered}
\operatorname{cov}_{X Y}=\frac{\sum(x-\bar{x})(y-\bar{y})}{n-1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{n-1}=\frac{2065.84-\frac{73.8 \times 318.4}{12}}{11}=9.789 \\
s_{X}=\sqrt{s_{X}^{2}}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{579.04-\frac{(73.8)^{2}}{12}}{11}}=\sqrt{11.379}=3.373 \\
s_{Y}=\sqrt{s_{Y}^{2}}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{n-1}}=\sqrt{\frac{\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}}{n-1}}=\sqrt{\frac{8587.48-\frac{(318.4)^{2}}{12}}{11}}=\sqrt{12.661}=3.558
\end{gathered}
$$

Now we can calculate $r\left(\right.$ and $\left.r^{2}\right)$:

$$
\begin{gathered}
r_{X Y}=\frac{\operatorname{cov}_{X Y}}{s_{X} s_{Y}}=\frac{9.789}{3.373 \times 3.558}=0.816 \\
r^{2}=0.666
\end{gathered}
$$

\ldots and a t statistic:

$$
t_{n-2}=t_{10}=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}=\frac{0.816 \sqrt{10}}{\sqrt{1-0.816^{2}}}=4.464
$$

With $10 d f, t=4.464$ is significant at the $\alpha=0.01$ two-tailed level (i.e. $p<.01$ two-tailed). (A computer would tell you that $p=.001$.) Next, to calculate the regression of Y on X (predicting Y from X), we aim to calculate the equation

$$
\hat{Y}=b X+a
$$

Your calculator should be able to give you \boldsymbol{a} and \boldsymbol{b} directly (and you've already entered the data to calculate r, so you should be able to retrieve a and b very quickly). But if you had to calculate them by
hand, you'd do it like this... First, we need the means of x and y :

$$
\begin{gathered}
\bar{x}=\frac{\sum x}{n}=\frac{2.1+10.3+\ldots+9.7}{12}=6.15 \\
\bar{y}=\frac{\sum y}{n}=\frac{29.8+27.9+\ldots+28.9}{12}=26.533
\end{gathered}
$$

Now we have all the information to calculate a and b :

$$
\begin{aligned}
& b=\frac{\operatorname{cov}_{X Y}}{s_{X}^{2}}=r \frac{s_{Y}}{s_{X}}=0.816 \times \frac{3.558}{3.373}=0.86 \\
& a=\bar{y}-b \bar{x}=26.533-0.86 \times 6.15=21.24
\end{aligned}
$$

So our regression equation, which you can add to your scatterplot, is

$$
Y=a+b X=21.24+0.86 X
$$

You can plot it by taking two or more x values that are reasonably far apart and calculating predicted values of Y, giving you $\{x, \hat{y}\}$ pairs. You should also find that the line passes through $\{0, a\}$, and $\{\bar{x}, \bar{y}\}$, i.e. through $\{0,21.24\}$ and $\{6.15,26.533\}$.
(This calculation - not hard, but time-consuming - should emphasize the importance of having a calculator that does the hard work for you in the exam!)

Necker
$r=.711, p=.003$ two-tailed, $n=15$
regression $\mathrm{Y}=97.431+2.66 \mathrm{X}$
frog $R G C$
$r=-.738, p=.015$ two-tailed, $n=10$
regression $\mathrm{Y}=9.825-0.0522 \mathrm{X}$

Vatican / ice cream

Correlate location rank with price rank (calling the result Spearman's correlation coefficient r_{s}):

Location rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Price rank: $\quad 9,7.5,10,5,5,7.5,2.5,1,5,2.5$
This gives you $r_{s}=-.778$. Since $n=10, p=.008$ two-tailed (as calculated by the program SPSS). However, different calculation techniques will give slightly different answers for p; for $r_{s}=-.778$ and $n=10$ your tables will show you that $.01<p<.02$, two-tailed.
impulsivity, CSF 5HIAA
$r=-.054, p=.883$ two-tailed, $n=10$
(regression $\mathrm{Y}=30.57-.0155 \mathrm{X}-$ you'll often see published figures in which 'non-significant' regression lines are plotted, mainly so you can see the line is flat and useless as a predictor.)

