(Answers calculated by RNC - caveat emptor.) In some of these examples I'll quote exact p values, rather than just saying ' $p<0.05$ '. Don't worry about this - since you're operating from tables and I'm doing some of these questions on a computer to save time, I can quote exact p values when you can't. If I say ' $p=.03$ ', your tables would show that p $<.05$, but not that $p<.01$. If I say ' $p=.125$ ', your tables would show that the answer is not significant at $p=.1$ (i.e. $p>$.1)... and so on.

Q1 Short answer: $U_{4,6}=5$. Critical value is 3 , so not significant (NS).
Step by step:

- Group B is the larger, so group A is 'group 1' and group B is 'group 2'.
- Group A: $n_{1}=4$. Group B: $n_{2}=6$.

Original data:
group 1 (A): $\quad 43 \quad 39 \quad 57 \quad 62$
group 2 (B): $\quad \begin{array}{lllllll}51 & 63 & 70 & 55 & 59 & 66\end{array}$
Corresponding ranks:

Sum of ranks

$\begin{array}{llllll}\text { group } 1(\mathrm{~A}): & 2 & 1 & 5 & 7 & 15\left(=R_{1}\right)\end{array}$
$\begin{array}{llllllll}\text { group } 2(B): & 3 & 8 & 10 & 4 & 6 & 9 & 40\left(=R_{2}\right)\end{array}$
Then $U_{1}=R_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2}=15-\frac{4 \times 5}{2}=5$ and $U_{2}=R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}=40-\frac{6 \times 7}{2}=19$. So U is the smaller of the two, i.e. $U=5$. We'd write $U_{4,6}=5$ to indicate n_{1} and n_{2} as well.
(Just to check our sums: $U_{1}+U_{2}=5+19=24$ and $n_{1} n_{2}=4 \times 6=24$, so they match, which they must do.
Similarly $R_{1}+R_{2}=15+40=55$ and $\frac{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}+1\right)}{2}=\frac{10 \times 11}{2}=55$ so they also match.)
Now we look up a critical value for $U_{4,6}$ (critical U with $n_{1}=4$ and $n_{2}=6$); we find that it's 3 . Since our U is not smaller than this, it's not significant.

Q2 $\quad U_{7,9}=15$. Critical value is 13 , so NS.
The method is exactly the same as in Q1. Just to make sure you get the ranks right when there are ties, here they are:
Original data:

group 2 (A):	4.5	2.3	7.9	3.4	4.8	2.7	5.6	6.1	3.5
group 1 (B):	3.5	4.9	1.1	2.5	2.3	4.1	0.7		

Corresponding ranks (in bold where ties have been split by taking the mean of the tied ranks):

group $2(\mathrm{~A}):$	11	3.5	16	7	12	6	14	15	$\mathbf{8 . 5}$

$\begin{array}{llllllll}\text { group } 1(\mathrm{~B}): & \mathbf{8 . 5} & 13 & 2 & 5 & 3.5 & 10 & 1\end{array}$
In this example, no more than two scores are tied for the same rank - but you may come across examples when more scores are tied. The principle is just the same; take the mean of the ranks for which they are tied. So the ranks of $\{10,50,50,50,60\}$ are $\{1,3,3,3,5\}$. The ranks of $\{2.3,2.3,2.3,2.3,8.1,8.9\}$ are $\{2.5,2.5,2.5,2.5,5,6\}$.
Q3 $\quad U_{7,7}=8$. Critical value is 9 , so *significant*.
Q4 $\quad U_{9,10}=20$. Critical value is 21 , so *significant*.
Q5 $\quad U_{16,17}=76.5$. Critical value is 82 , so *significant*.
Q6 $\quad T_{7}=3$. Significant at $\alpha=0.05$ (one-tailed) or $\alpha=0.1$ (two-tailed) (critical value 4).

Full working:

Group A	4.5	2.3	7.9	6.8	5.3	6.2	5.7	
Group B	4.3	2.7	9.0	6.7	5.6	10.1	6.9	
Difference (B-A)	-0.2	0.4	1.1	-0.1	0.3	3.9	1.2	
Non-zero differences	(as previous row)							
Ranks of non-zero differences $\quad 2$	4	5	1	3	7	6	$\boldsymbol{n}=\mathbf{7}$	
\quad (ignoring sign)								

```
Ranks of + differences
4 5
sum=25=T
Ranks of - differences
2
1
sum=3=T
```

The T statistic is the smaller of T^{+}and T^{-}, i.e. 3. We can write $T_{7}=3$ (to show that $n=7$). This value, 3 , is smaller than the critical value of T_{7} for $\alpha=0.05$ (one-tailed) or $\alpha=0.1$ (two-tailed), which is 4 . But our T is not smaller than the critical value of T_{7} for any smaller values of α shown in our tables. So we could say ' $T_{7}=3$, significant at $\alpha=0.05$ (one-tailed) or $\alpha=0.1$ (two-tailed)'.
(To check our sums, $T^{+}+T^{-}=25+3=28$ and $\frac{n(n+1)}{2}=\frac{7 \times 8}{2}=28$ so all's well with the world.)

Q7 $\quad T_{9}=3$. Significant at $\alpha=0.01$ (one-tailed) or $\alpha=0.02$ (two-tailed) (critical value 4).
Q8 $\quad T_{8}=8.5$. Not significant ($p>0.05$ one-tailed; $p>0.10$ two-tailed; critical value 6).
Q9 $\quad T_{8}=4$. Significant at $\alpha=0.05$ (one-tailed) or $\alpha=0.10$ (two-tailed) (critical value 6).
Nonparametric test (subscripts are n, prob- \quad Parametric equivalent (two-tailed in all cases): abilities are two-tailed unless stated):
Q10 traffic Mann-Whitney $U_{15,15}=59, p<.05$
(The question phrases a one-tailed question,
F test for heterogeneity of variance: $F_{14,14}=1.026$, NS
Unpaired t test, equal variances: $t_{28}=2.325, p=.027$

Q11 RT Wilcoxon matched-pairs signed-rank $T_{12}=5, \quad$ Paired t test: $t_{11}=3.879, p=.00257$ $p<.01$
Q12 cards Wilcoxon matched-pairs signed-rank $T_{11}=25, \quad$ Paired t test: $t_{11}=0.613$, NS NS

Q13 xeno Mann-Whitney $U_{5,6}=10$, NS
(The question phrases a one-tailed question, but you could argue for a two-tailed test.)

Q14 cod Wilcoxon matched-pairs signed-rank $T_{12}=11, \quad$ Paired t test: $t_{10}=2.872, p=.0166$ $p<.05$
Q15 digits Mann-Whitney $U_{11,14}=76.5, \mathrm{NS} \quad F$ test for heterogeneity of variance: $F_{10,13}=1.338$, NS
Unpaired t test, equal variances: $t_{23}=0.199$, NS
Q16 revfig Mann-Whitney $U_{8,10}=16, p<.05$
(The question phrases a one-tailed question, but you could argue for a two-tailed test.)
Q17 conv Wilcoxon matched-pairs signed-rank $T_{12}=$
Paired t test: $t_{11}=2.218, p=.0485$ 13.5, $p<.05$
F test for heterogeneity of variance: $F_{9,7}=1.146$, NS
Unpaired t test, equal variances: $t_{16}=2.278, p=.031$

Q18 bats Wilcoxon matched-pairs signed-rank $T_{9}=3.5, \quad$ Paired t test: $t_{9}=2.743, p=.0228$ $p<.02$
Q19 music Mann-Whitney $U_{10,10}=48$, NS $\quad F$ test for heterogeneity of variance: $F_{9,9}=1.327$, NS
Unpaired t test, equal variances: $t_{18}=0.051$, NS
Q20 letters Wilcoxon matched-pairs signed-rank $T_{9}=5.5, \quad$ Paired t test: $t_{9}=2.299, p=.0471$
$p<.05$
Q21 vote Mann-Whitney $U_{8,8}=4, p<.05$
Q22 rats Mann-Whitney $U_{10,10}=40$, NS
F test for heterogeneity of variance: $F_{9,9}=1.899$, NS
Unpaired t test, equal variances: $t_{18}=0.051$, NS
Q23 radar Wilcoxon matched-pairs signed-rank $T_{12}=12$
Paired t test: $t_{11}=2.449, p=.0323$ $p<.05$
Q24 col'r Wilcoxon signed-rank $T_{16}=37$, NS
One-sample t test: $t_{15}=1.730$, NS
(The question phrases a one-tailed question, but you could argue for a two-tailed test.)

Q25 Use the normal approximation for U. If $U_{20,60}=400$, then $z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}=\frac{400-600}{\sqrt{\frac{1200 \times 81}{12}}}=-2.22$ This Z score is associated with a p value of 0.0132 (one-tailed) or $2 \times 0.0132=0.0264$ (two-tailed).

