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Reasoning about uncertainty and learning strategies in medicine MVST IB 2004–5 (4 Feb 2005)
Rudolf N. Cardinal
Department of Experimental Psychology

Neurobiology & Human Behaviour
Psychology component: self-directed exercise

Background

You may have noticed that there are three elements of the NHB lecture course con-
cerned with psychology — Mental Illness (Everitt & Baron-Cohen), Psychology of
Cognition and Memory (McLaren), and Neurobiology of Learning, Memory and
Cognition (Ridley). This is a fourth: a “self-directed exercise”. Although this exer-
cise is not assessed, we hope you will find it useful and interesting, and that it helps
you a little to function as a better doctor. It is intended to demonstrate the applica-
tion of psychological issues to medicine, relating to issues in the preclinical and
clinical courses and to the day-to-day practice of medicine and surgery, and it pro-
vides practice in thinking about medical issues using psychological concepts.

Overview

There are some problems for you to think about, to do with learning and retrieval
strategies, that follow from Ian McLaren’s course. I’d also like to convey one par-
ticular application of psychology to medicine: the best and clearest way to think
about uncertainty, risk, and probabilities in clinical practice, and to convey that in-
formation to other people.

1. Learning and retrieval strategies

In Ian McLaren’s first lecture, you learned about encoding, how information is
stored, and the factors that influence this process — including the use of imagery,
organization, spacing, rehearsal, etc. So we suggest you answer this question and
discuss it with your supervisor:

• Design an optimal strategy for learning this course. Justify the procedures
used.

The second lecture was about retrieval (and, indirectly, forgetting) as well as the
control of memory — including direct and indirect access, and the role of context,
schemas, and scripts. So we suggest you answer this question and discuss it with
your supervisor:

• Specify the optimal interview strategy for gathering evidence from eyewit-
nesses at the scene of an accident. Justify your approach.

2. Reasoning about risk

Importance

A large proportion of doctors reason poorly and make mistakes when it comes to in-
formation about risks and probabilities in diagnosis. Mistakes like this can hurt or
kill patients. It is quite likely that you will have no further formal teaching on this
subject in your preclinical or clinical course. It is very easy to learn how to improve
your own reasoning, and how to explain risks to your patients in ways that they too
are more likely to understand. They will appreciate this.

People do not deal well with uncertainty or probabilities

Most of the examples that follow are taken from Gigerenzer (2003); he is a psy-
chologist whose research deals with how and why most people are confused by in-
formation about risks, why we frequently make mistakes when reasoning with prob-
abilistic information, and what we can do about it.



2

• The illusion of certainty. A woman with few risk factors for HIV infection is
screened for it, and tests positive. She is shocked and upset; her colleagues find
out and ostracize her; she loses her job. She moves into a halfway house for
HIV-infected patients and has unprotected sex with an HIV-infected resident,
reasoning that she is already infected. Her relationship with her son suffers (she
is a single parent). She falls ill; her physician retests her for HIV; she is found to
be HIV-negative. She never had HIV.

HIV tests have false positives (disease-free people sometimes test positive) — all
tests do. This may be for technical reasons, or laboratory error — in this case, a lab
inadvertently exchanged two patients’ results. Yet the popular and incorrect image is
that diagnostic tests are infallible. Patients frequently think this, and so do many
health professionals. In one study, a majority of HIV counsellors stated that false
positives do not occur, and half said that if a patient tests positive, it is 100% certain
that he is infected with the virus (Gigerenzer et al., 1998). This is simply wrong.

• Risk communication. A psychiatrist tells his patients that they have a 30–50%
chance of developing a sexual problem, such as impotence or loss of libido,
from a selective serotonin reuptake inhibitor (SSRI). Many patients become
anxious upon hearing this. It turns out that many of them thought that “a 30–
50% chance of developing a sexual problem” meant “something will go wrong
in 30–50% of my sexual encounters”.

The psychiatrist rephrases his advice, saying that for every 10 people who take the
SSRI, 3 to 5 experience a sexual problem. This is mathematically identical, but
clearer to the patients. Frequencies are clearer than probabilities. The patients were
previously confused about the reference class: 30–50% of what? People who take
the drug, or sexual encounters?

• Drawing conclusions from numbers. A 40-year-old woman has a screening
mammogram (breast X-ray). It is positive. What is the chance that she has
breast cancer? Here are four ways of expressing the same information:

1. Probabilities, written in English. The probability that a 40-year-old woman
has breast cancer is about 1%. If she has breast cancer, the probability that
she tests positive on a screening mammogram is 90%. If she does not have
breast cancer, the probability that she tests positive anyway is 9%. What are
the chances that a woman who tests positive has breast cancer?

2. Probabilities, written in mathematical notation.

P(has breast cancer) = 0.01
P(tests positive | has breast cancer) = 0.90

P(tests positive | doesn’t have breast cancer) = 0.09

What is P(has breast cancer | tests positive)?

3. Medical jargon. In 40-year-old women, screening mammography has a
sensitivity of 90% and a specificity of 91%. The prevalence of breast can-
cer in 40-year-old women is 1%. What is the positive predictive value?

You probably find that it’s not easy to work out any of the above in your head, and
the jargon doesn’t help either (it’s explained later, though it should also be familiar
from your IA epidemiology lectures). So try this:

4. Natural frequencies. Think of 100 women, aged forty. One has breast can-
cer, and she will probably test positive. Of the 99 who do not have breast
cancer, about 9 will also test positive. Thus, a total of 10 women will test
positive. How many of those who test positive actually have breast cancer?

Natural frequencies are good, because people reason with natural frequencies much
better than with probabilities. Being literate and numerate people, you may underes-
timate just how poor most people are at handling probabilities. You should know
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that 40% is the same as 0.4. Yet in one survey, 1000 Germans were asked what “40
percent” means — one quarter, 4 out of 10, or every 40th person? About a third of
those asked got this wrong (Gigerenzer, 2003). Also common are mistaken infer-
ences: e.g. thinking that because most heroin addicts have used marijuana, most
marijuana users will become heroin addicts.

• Court cases. Always fun, these. You are accused of murder and tried. The only
piece of evidence is a DNA match between you and a trace found on the victim.
The prosecution calls an expert witness who testifies that the probability that
this match occurred by chance is 1 in 100,000. The defence insists that this be
rephrased: out of every 100,000 people, 1 will show a match. You live in Lon-
don (census population ~7 million). Which statement do you prefer?

Uncertainty is everywhere in medicine

Uncertainty, and the need to reason with probabilities and other kinds of uncertain
information, is prevalent in clinical medicine. Patients want certainty in diagnosis
and prognosis, and so do doctors.

• A common clinical scenario: when should you tolerate diagnostic uncertainty?
A very frail 89-year-old man with substantial ischaemic heart disease who takes
aspirin regularly has just had a stroke. On admission, he is also found to be
anaemic and his blood tests suggest that this is a result of bleeding (he has a mi-
crocytic, hypochromic anaemia, suggesting iron deficiency, with a raised plate-
let count, suggesting blood loss as the cause). A faecal occult blood test con-
firms your suspicion that the bleeding is gastrointestinal. Common causes
would be bleeding from a stomach ulcer (perhaps exacerbated by his aspirin) or
lower gut bleeding, e.g. from colorectal cancer. You are uncertain. Will you in-
vestigate further? The usual starting point might be upper gastrointestinal en-
doscopy (oesophagogastroduodenoscopy or OGD), which involves sedating the
patient and inserting a large endoscopic camera down his throat. Follow-up in-
vestigations might include a barium enema, and perhaps a colonoscopy, looking
for lower gut problems. He may not tolerate these investigations well. And if
you find a large ulcer or cancer requiring surgery, will he survive the surgery?
Alternatively, you could start a proton pump inhibitor (PPI) to suppress gastric
acid production (and check his aspirin dose, though he may well need to stay on
low-dose aspirin); PPIs are usually tolerated well. The diagnosis will remain
uncertain, although if the signs of bleeding disappear after the PPI is started,
you might conclude that it was stomach bleeding after all. Would you tolerate
the same uncertainty in a young patient who would be fit for a hemicolectomy if
cancer were to be discovered?

• CT screening: saving life, or exploiting our desire for certainty? You can now
have private whole-body computer tomography (CT) scanning. This is becom-
ing a hotly-debated issue in medicine. The UK company, LifeScan1, offers a
choice of a heart scan (detecting calcification indicative of coronary artery ath-
erosclerosis), a lung scan (for lung cancer), a heart and lung scan, a bone den-
sity scan (for osteoporosis), a virtual colonoscopy (for colon cancer), a body
scan with virtual colonoscopy, or the whole works — heart, lung, abdomen, and
bone density. The web site offers a risk assessment. I filled it out; I’m 29 and
think I’m reasonably healthy, but my grandfather died in his 80s of a heart at-
tack, so I have a family history of heart disease. That was the only risk factor I
ticked, and without asking my age the web site told me: “You are in an at risk
group and may benefit from one of the LifeScan services, in particular a Heart
Scan.” It added: “Anybody over the age of 50 although considered at average
risk should consider colon screening.” Fortunately, the web site also notes else-
where that “for people under 40… it will be necessary to obtain a letter from
their GP or consultant.” Undoubtedly, whole-body CT scanning can pick up un-
diagnosed cancers or other diseases — in one series, cancers were found in
about 1% of self-referred adults over forty (19 out of 1777 people) — and it has
its advocates (see Brant-Zawadzki, 2002a; 2002b). Sometimes these cancers

                                                          
1 http://www.lifescanuk.org/
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would be picked up later anyway, some might never have progressed enough
during the patient’s lifetime to be a problem, and some might be untreatable; at
present we don’t know if CT screening actually helps people to survive longer.
Like any test, CT screening will cause false positives, meaning that healthy
people will be investigated further, unnecessarily. Whole-body CT scanning
may also cause cancer, because it gives a fair dose of X-rays — an abdominal
CT scan typically gives 10 millisieverts (mSv), equivalent to 500 chest X-rays
or 3.3 years’ worth of background radiation, and it is estimated that of every
2000 people receiving this dose, 1 extra person would get cancer2. And it’s been
estimated that if 2000 forty-five-year-olds each had an annual screening CT for
thirty years, about 38 would develop a fatal cancer as a result (Brenner & Ellis-
ton, 2004). LifeScan say “our… protocols minimize risk to non-calculable lev-
els”, which is patently untrue, and “our low dose total body technique produces
1/2 to 1/3 of the exposure of a conventional CT study, more than 2 million of
which are ordered yearly by doctors in the UK for known medical problems”,
which neatly sidesteps some of the issues. Furthermore, a normal CT scan
doesn’t guarantee that you haven’t got cancer. The US Food and Drug Admini-
stration comment as follows3: “At this time the FDA knows of no data demon-
strating that whole-body CT screening is effective in detecting any particular
disease early enough for the disease to be managed, treated, or cured and ad-
vantageously spare a person at least some of the detriment associated with seri-
ous illness or premature death. Any such presumed benefit of whole-body CT
screening is currently uncertain, and such benefit may not be great enough to
offset the potential harms such screening could cause.”

Doctors reason poorly with probabilities, like most people

Doctors are poor at interpreting probabilistic information. Hoffrage & Gigerenzer
(1998) asked 48 physicians this question:

To facilitate early detection of breast cancer, starting at a par-
ticular age, women are encouraged to participate at regular in-
tervals in routine screening, even if they have no obvious
symptoms. Imagine that you conduct such breast cancer
screening using mammography in a particular region of the
country. The following information is available about asymp-
tomatic women aged 40 to 50 in such a region who participate
in mammography screening:

The probability that one of these women has breast cancer is
0.8%. If a woman has breast cancer, the probability is 90% that
she will have a positive mammogram. If a woman does not have
breast cancer, the probability is 7% that she will still have a
positive mammogram. Imagine a woman who has a positive
mammogram. What is the probability that she actually has
breast cancer?

The doctors — some of them very senior clinicians — thought hard about the prob-
lem. Their estimates ranged from 1% (the base rate, or prevalence of breast cancer)
to 90% (“the probability of a positive result given that a woman has breast cancer”,
which they confused with what they were after, namely “the probability of breast
cancer given that a woman has a positive test result”). The most popular answer was
90%; the median answer was 70%; only 10% of the physicians gave the correct an-
swer (which is 9.4%) or something very close to it, and even some of those gave the
correct answer only for the wrong reasons (such as confusing “the probability of a
positive result given that the patient has not got cancer” with “the probability of can-
cer given a positive result”). Other studies have found physicians to be even worse
(e.g. Eddy, 1982). Next, the question was re-expressed in natural frequencies, like
this:

                                                          
2 http://www.fda.gov/cdrh/ct/risks.html
3 http://www.fda.gov/cdrh/ct/ and http://www.fda.gov/cdrh/ct/screening.html
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Eight out of every 1,000 women have breast cancer. Of these 8
women with breast cancer, 7 will have a positive mammogram.
Of the remaining 992 women who don’t have breast cancer,
some 70 will still have a positive mammogram. Imagine a sam-
ple of women who have positive mammograms in screening.
How many of these women actually have breast cancer?

This conveys the same information as before (numbers rounded). Now it’s easy to

work out the right answer; it’s 09.0
707

7 =
+

, or 9%. This time, the majority of the

physicians gave the right answer or something very close to it. All the information
was available the first time round, the physicians took many minutes over their an-
swers, and they could have converted the probabilities into frequencies if they had
thought of this approach — yet few got it right. The problem represents a simple and
common clinical situation about which they would be expected to advise patients.

Bayes’ rule — correct, but hard to understand and apply

The formal way to solve the probabilistic problem is by using Bayes’ Theorem
(Bayes, 1763). The point of this section is not to confuse you, but to show you that
the mathematically correct way to solve these sorts of problems is quite hard and
long-winded! Skip it if you want.

We write P(A) to denote the probability that event A happens. Similarly, we write
P(B) to denote the probability that event A happens. We write P(A | B) to denote the
probability that event A happens, given that event B has already happened. Simi-
larly, we write P(B | A) to denote the probability that event B happens, given that
event A has already happened.

Bayes’ rule is this:
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So let’s return to our original breast cancer screening problem (we’ll use some
slightly different numbers just for variety) and restate it in mathematical terms:

“The probability that a 40-year-old woman has breast cancer is
about 1%.

P(has breast cancer) = 0.01

If she has breast cancer, the probability that she tests positive
on a screening mammogram is 90%.

P(tests positive | has breast cancer) = 0.90

If she does not have breast cancer, the probability that she tests
positive anyway is 9%.

P(tests positive | doesn’t have breast cancer) = 0.09

What are the chances that a woman who tests positive has
breast cancer?”

What is P(has breast cancer | tests positive)?

By Bayes’ rule, substituting “breast cancer” for B and “testing positive” for A,
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So now we need to know P(positive) — the chance of testing positive, regardless of
anything else. A woman can test positive if she has breast cancer (a true positive) or
if she doesn’t (a false positive) — and these are the only two ways to test positive.
And we know that the probability of one of our women having breast cancer is 0.01,
so the probability of not having breast cancer must be 0.99. So we know that:

0981.0

)09.099.0()90.001.0(

)cancer no|positive(cancer) no()cancer|positive()cancer(

positive) andcancer  no()positive andcancer ()positive(

=
×+×=

+=
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Now we know that, we can calculate P(breast cancer | positive) from our previous
result:

0917.0
0981.0

90.001.0

)positive(

90.001.0
)positive|cancerbreast (

=

×=

×=
P

P

So if a 40-year-old woman tests positive in a screening mammogram, there is about
a 9% chance that she has cancer — or, alternatively, of 100 women that test positive,
9 will have cancer and 91 will not.

Natural frequencies are easy to understand and explain

It’s clear that while we could use Bayes’ formula to work out the likelihood that
someone testing positive has the disease, it’s difficult, and we’re likely to make
mistakes. We’re certainly not likely to be able to do it successfully in our heads. We
reason better with frequencies or concrete cases than abstract probabilities. Prob-
abilities are all “normalized” to be between 0 and 1; this makes them mathematically
useful, but hard for us to compare and reason with. Natural frequencies represent the
real world more clearly. People will understand your explanations about uncertainty
better if you use natural frequencies.

Whenever faced with a problem involving probabilities, try
to create a natural frequency representation. You will find
the problem easier, and you will explain it more clearly to

other people.

Why call them “natural” frequencies? There are ways of making frequencies “un-
natural”, by normalizing them like probabilities — and this makes them difficult to
work with again. In our breast cancer example, we could use natural frequencies:

Eight out of every 1,000 women have breast cancer.
Of these 8 women with breast cancer, 7 will have a
positive mammogram. Of the remaining 992 women
who don’t have breast cancer, some 70 will still have
a positive mammogram. Imagine a sample of women
who have positive mammograms in screening. How
many of these women actually have breast cancer?

√

… or unnatural (normalized) frequencies:

Eight out of every 1,000 women have breast cancer.
Of every 1,000 women with breast cancer, 900 will
have a positive mammogram. Of 1,000 women with-
out breast cancer, 70 will still have a positive mam-
mogram. Imagine a sample of women who have posi-
tive mammograms in screening. How many of these
women actually have breast cancer?

×



7

You can see which is easiest to think about, and best to use when explaining to oth-
ers. An excellent and fast way to sketch any situation like this is with a frequency
tree:

Why do we reason poorly with probabilities?

In the study by Hoffrage & Gigerenzer (1998), the doctors gave a wide range of an-
swers to the probabilistic question, most of them wrong. It turned out that they had
used a wide range of incorrect strategies. One was to confuse p(positive | disease)
with p(disease | positive), but there were many others. Some individuals used two
different incorrect strategies when asked two consecutive questions of the same
style. Many were aware that they were performing poorly, but they just didn’t know
the correct way to proceed. In contrast, although the physicians were not perfect
when given natural frequency information, they were much better — for one thing,
this form of information made them more likely to use information about the preva-
lence of the disease. So-called base rate neglect (ignoring the base rate, or preva-
lence, of a disease) is common with probabilistic information, and it seems less so
when natural frequencies are used. This is not so surprising, because when natural
frequencies (“7 positive tests out of 8 with breast cancer out of 1000 women”) are
converted to probabilities (“p[positive | disease] = 7 out of 8 = 0.9”), information
about the prevalence is removed. Substantial improvements were seen in some cases
when the doctors were taught an explicit strategy — the use of frequency trees.

Since this strategy helps doctors to reason correctly, Gigerenzer (2003) also advo-
cates it as a way of communicating risk to patients, which seems eminently sensible.
When asked about risks, professional HIV counsellors (including physicians) fre-
quently give numbers that are confusing, incorrect, or impossible (Gigerenzer et al.,
1998), so it may be that the enforced clarity of natural frequencies improves the
situation. For example, when counselling a low-risk heterosexual man about HIV
testing, Gigerenzer suggests the following kind of phrasing:

(Sensitivity?) “The test will be positive for about 998 of 1,000
people infected with HIV. Depending on circumstances, such as
the specific tests used, this estimate can vary.”

(False positives?) “About 1 in 10,000. False positives can be
reduced by repeated testing (ELISA and Western blot), but not
completely eliminated. They are caused by certain medical con-
ditions as well as by laboratory errors.”

(Prevalence?) “About 1 in 10,000 heterosexual men with low-
risk behaviour is infected with HIV.”

(Positive predictive value?) “Think of 10,000 low-risk men like
you. One is infected and will test positive with practical cer-
tainty. Of the 9,999 noninfected men, 1 will also test positive.
Thus we expect that out of 2 men who test positive, only 1 has
HIV. This is the situation you would be in if you were to test
positive; your chance of having the virus would be about 1 in
2.”
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We have several kinds of innate psychological bias towards certain kinds of infor-
mation that mean that we can reason perfectly well in some situations, but very
poorly in other situations that are logically identical. Some of these are applicable to
reasoning in medicine. Such reasoning biases are covered further by the Experi-
mental Psychology Special Option, for those of you that choose to take it.

Interpreting risk information: medical jargon, and how to mislead

Suppose you wish to understand and explain the benefits and risks of mammography
screening in asymptomatic women. First, the generalities: women benefit if cancers
are detected earlier than they would otherwise be, and those cancers would have
gone on to cause the patient harm, and those cancers can be treated successfully,
such that morbidity (illness) or mortality (death) can be prevented or delayed.
Women may be harmed by false positives (unnecessary worry, investigations, and
perhaps surgery), detection and treatment of cancers that would not have progressed
within their lifetime, radiation-induced cancers, and false negatives (false reassur-
ance). A very good way of measuring the overall benefit is to conduct randomized
controlled trials comparing death rates in women who are screened or not screened.
The results of one set of Swedish trials (see Nystrom et al., 2002) are as follows:

Number of women
(aged 40–74)

Deaths from
breast cancer

Deaths from breast
cancer, per 1000
women4, rounded

Screened 129,750 511 4
Control 117,260 584 5

Fewer women died from breast cancer in the screened group. How would we ex-
press this? Here are several ways of expressing the same information:

• Natural frequencies — actual proportions in each group. In the control
group, 5 per 1000 women died of breast cancer; in the screened group, 4 per
1000 women died of breast cancer.

• Absolute risk reduction (ARR). The chance of dying from breast cancer is re-
duced by 1 in 1000, or 0.1% (that is, 5 per 1000 minus 4 per 1000).

• Relative risk (RR), sometimes called the probability ratio. The relative risk of
dying if you are screened is 0.8, compared to if you are not screened (that is, 4
per 1000 divided by 5 per 1000). A relative risk of 1 indicates an ineffective
treatment; a relative risk of <1 is good, and a relative risk of >1 indicates that
the “treatment” is actually bad for you.

• Relative risk reduction (RRR). The chance of dying from breast cancer is re-
duced by 20% (a decrease from 5 to 4 per 1000 is a decrease of 20%).

• Odds ratio (OR). The odds of dying in the screened group are 4:996 = 4/996.
The odds of dying in the control group are 5:995 = 5/995. The odds ratio is 4/996

÷ 5/995 = 0.8.5

• Event-free patients (EFP). In the control group, 99.5% of women did not die
from breast cancer. In the screened group, 99.6% of women did not die from
breast cancer.

• Number needed to treat (NNT). To save the life of one woman, you would
need to screen 1000.

• Increase in life expectancy. You can’t calculate the increase in life expectancy
directly from the information we have here — but out of interest, women who
participate in screening from the age of 50 to 69 increase their life expectancy
by an average of 12 days (Salzmann et al., 1997). (It’s easy to see how this sort
of figure is arrived at: if 1 in 1000 women is saved by the screening and lives an
extra 33 years, this would be an average of 12 days per woman screened.) This
can be compared with other common scenarios — for example, this is roughly
similar to the effect of driving 300 miles fewer per year (see Gigerenzer, 2003,

                                                          
4 An better measure would be deaths from breast cancer per woman–year, not per woman, but the conclusions do not alter substantially here.
5 The odds of an event A happening are P(A) ÷ P(¬A), where ¬A means “not A”. You could also write odds = P(A) ÷ [1 – P(A)]. Given odds, you can
also work out probabilities: P(A) = odds/(1 + odds). Bayes’ rule can also be written in terms of odds. The odds against something are the reciprocal
of the odds for something. Odds ratios and relative risks can both be confusing; some more examples and explanations are given in the NST IB statis-
tics booklet at http://pobox.com/~rudolf/psychology (pages 18–20, 22, and 76–77 of the 2004–5 handout).
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p. 60). This form of analysis is sometimes used to compare the cost-
effectiveness of treatments; for example, such screening costs $21,400 per year
of life saved (Salzmann et al., 1997).

It is very easy to mislead people with these figures. If you want to make an effect
sound large, quote the relative risk reduction (“screening reduces deaths from breast
cancer by 20%”). People will interpret this to mean “for every 100 people screened,
the lives of 20 will be saved”, but this is not true. A relative risk reduction of 20% is
great news if the disease is very common, as many lives will be saved, but not so
good if the disease is very rare. Even professional health funding agencies are influ-
enced by the phrasing of funding requests — in one study, health authorities were
most likely to fund a treatment if the relative risk reduction was given and least
likely to fund when event-free patients or absolute risk reduction were quoted, with
NNT in between (Fahey et al., 1995). Conversely, to minimize the apparent risk of a
dangerous procedure, you would present absolute rather than relative risks (Pitches
et al., 2003)! Actual frequencies, absolute risk reduction, NNT, and increase in life
expectancy are all clear ways to express risk.

Interpreting the results of diagnostic tests: more medical jargon

You will come across the terminology of diagnostic tests many times — and the
terminology can be confusing! For a given test, people can have the disease or not,
and they can test positive or negative for it. We can express the four possible out-
comes like this:

Disease present No disease present
Positive test result a

true positives
b
false positives

Negative test result c
false negatives

d
true negatives

Here are four terms in common use:

• sensitivity: if a patient has the disease, how likely is the test to be correct (posi-

tive)? It’s calculated as 
ca

a

+
=

disease

positive and disease
.

• specificity: if a patient doesn’t have the disease, how likely is the test to be cor-

rect (negative)? It’s calculated as 
db

d

+
=

disease no

negative and disease no
.

• false negative rate (FNR): if a patient has the disease, how likely is the test to

be wrong (negative)? It’s calculated as 
ca

c

+
=

disease

negative and disease
. Obvi-

ously, FNR = 1 – sensitivity.
• false positive rate (FPR): if a patient doesn’t have the disease, how likely is

the test to be wrong (positive)? It’s calculated as

db

b

+
=

disease no

positive and disease no
. Obviously, FPR = 1 – specificity.

These four are properties of the test. No matter how common or rare the disease is, a
given test has a given sensitivity (and therefore FNR) and specificity (and therefore
FPR). For example, we might have an ELISA (enzyme-linked immunosorbent as-
say) for HIV detection that has a sensitivity of 99.9% and a specificity of 99.9% for`
detecting antibodies to HIV, which is pretty good.6 A Western blot test might have a
different sensitivity and specificity.

We also have these:

                                                          
6 What accounts for the errors? Well, some proteins detected by HIV tests are also raised by other infectious agents (giving rise to false positives). For
example, an ELISA test for HIV may produce false positives if the patient has Lyme disease, syphilis, or systemic lupus erythematosus. Western blots
are more specific, but never believe that any test is perfect. HIV infection may have been acquired recently and antibodies haven’t had time to de-
velop (a false negative). And, of course, the lab may confuse two patients’ blood, or perform the assay wrong, or mix up the results. It is a mistake to
think that human errors do not contribute to false positives just as technical errors do!
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• pre-test probability or base rate or prevalence: before we do the test, how
likely is the patient to have the disease? It’s calculated as

dcba

ca

+++
+=

people all

disease
. (The term “prevalence” applies to diseases; the

terms “pre-test probability” or “base rate” apply to all sorts of test situations, not
just diseases.)

• positive predictive value (PPV): if a patient tests positive, how likely is he to

have the disease? It’s calculated as 
ba

a

+
=

positive

positive and disease
.

• negative predictive value (NPV): if a patient tests negative, how likely is he

not to have the disease? It’s calculated as 
dc

d

+
=

negative

negative and disease no
.

The PPV and the NPV depend on the properties of the test, but also on the preva-
lence. Let’s illustrate this. First, we test 1,000,000 people with no known risk factors
for HIV — blood donors, perhaps — in whom the prevalence of HIV is 0.1%. As-
sume our test’s sensitivity and specificity are both 99.9%. Our table might look like
this:

1,000,000 blood donors (prevalence 0.1%)
Disease No disease

present
Positive test 999 999 Total 1,998 who

test positive
Negative test 1 998,001 Total 998,002 who

test negative
Total
1,000 who
have HIV

Total 999,000
who do not
have HIV

Grand total
1,000,000

Positive predictive value = 5.0
1998

999 =  or 50%

Negative predictive value = 999999.0
998,002

998,001 =  or >99.9%

But suppose that instead, we tested 1,000,000 intravenous drug abusers, in whom the
prevalence of HIV is 10%. Our table would look like this:

1,000,000 drug addicts (prevalence 10%)
Disease No disease

present
Positive test 99,900 900 Total 100,800 who

test positive
Negative test 100 899,100 Total 899,200 who

test negative
Total
100,000
who have
HIV

Total 900,000
who do not
have HIV

Grand total
1,000,000

Positive predictive value = 991.0
100,800

99,900 =  or 99.1%

Negative predictive value = 999889.0
899,200

899,100 =  or >99.9%

You can see how the PPV has changed dramatically as a result of the change in
prevalence. If we give HIV tests to people with no risk factors and they test positive,
then there is only a 1 in 2 chance that they actually have HIV. If we give the same
test to people with strong risk factors for HIV and they test positive, then it is very
(99.1%) likely that they do in fact have HIV.
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This is all very obvious for groups of people, like our million blood donors and mil-
lion drug addicts. What happens when we consider just one patient? One way of in-
terpreting this “Bayesian” thinking is that the meaning of a test’s results depends on
your prior beliefs about the person. If you thought that the patient was unlikely to
have HIV before you did the test, because he’s a blood donor with few risk factors,
then you shouldn’t be too convinced he has HIV just because he tests positive. If
you had good reason to think that the patient had HIV before you ran the test, be-
cause he’s a drug addict at high risk, then a positive result should leave you pretty
certain that he does have HIV. Many people are uncomfortable with this apparently
subjective interpretation of test results; nevertheless, it is correct.

Further examples: natural frequencies in the courtroom

Wife battery and murder

No medical relevance here — this last section is just for interest. Courtroom errors
can illustrate confused thinking about risk; here are two examples, again from
Gigerenzer (2003). In the O. J. Simpson trial, there was evidence that Simpson had
been violent to his ex-wife, who had been murdered. The prosecution argued that a
history of wife beating reflects a motive to kill: “a slap is a prelude to homicide”.
The defence countered that battery was not a predictor of murder, and should not be
admissible as evidence. The defence argued as follows: 2.5–4 million women are
battered annually by their partners in the USA, yet only (!) 1432 per year are killed
by their partners, so there is less than 1 homicide per 2,500 instances of abuse, or
~40 homicides per 100,000 instances of abuse.

The figures quoted show that p(husband murders wife | husband batters wife) ≈
1/2500, and the defence argued on this basis. But this is not the relevant probability,
as it omits crucial information: the wife in question had been murdered. So we are
not interested in p(husband murders wife | husband batters wife), but in p(husband
murders wife | husband batters wife and wife was murdered). To work this out, we
also need to know how many women are murdered by people other than their hus-
bands: it turns out this is about 5 per 100,000 each year in the USA (and we assume
this is the same for those who are battered and those who are not). Again, we could
play with mathematics, but it’d be hard, so the simplest way to represent this is by a
frequency tree, making the numbers concrete:

So if a woman has been battered and murdered, the probability that her husband is
the murderer is not 1 in 2500 (0.0004) but 40 out of 45 (0.89) — wife battery is evi-
dence against the partner of a murdered woman (Good, 1995; 1996). (One could
even calculate how much of a difference the information about battery makes, by
comparing this probability to the probability that the husband is the murderer if a
woman had been murdered but not battered.)

DNA fingerprinting

Here’s another area of common misconception. It concerns DNA fingerprinting, in
which highly polymorphic “junk coding” regions of human DNA are amplified us-
ing the polymerase chain reaction, enzymatically fragmented, and the fragment pat-
tern compared to that from DNA found at a crime scene (DNA fingerprinting is not
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full-blown sequencing of the sort used by the Human Genome Project). What is the
relationship between a DNA match and the guilt of a defendant?

• Reported match → true match. When the lab reports that the defendant’s DNA
matches the crime scene DNA, they may be right (true positive) or wrong (false
positive). The false positive rate is probably of the order of 1 in 100 — due to
technical errors (e.g. enzyme failures producing misleading DNA banding pat-
terns) or human errors (e.g. contamination or mislabelling of samples) (Koehler,
1997).

• True match → defendant was the source. If the defendant’s DNA does match
the crime scene DNA, that may be because the crime scene DNA is the defen-
dant’s DNA, or because the crime scene DNA is somebody else’s DNA that is
very similar to, or identical to, the defendant’s (e.g. close relatives).

• Defendant was the source → defendant was present at the crime scene. If the
crime scene DNA is the defendant’s DNA, that may be because the defendant
was at the crime scene, or because his DNA was transferred there, deliberately
or accidentally, by somebody else.

• Present at the crime scene → guilt. If the defendant was at the crime scene, he
may be guilty, or he may have been present at the crime scene be-
fore/during/after the crime but not have committed it.

The random match probability is the probability that a random person matches the
crime scene DNA. The source probability is the probability that the defendant was
the source of the crime scene DNA. The guilt probability is the probability that the
defendant committed the crime. There are a couple of mistakes commonly made in
courtrooms:

• The random match probability p(match) is confused with p(not source | match).
This is called the source probability error. For example, if the random match
probability is 1 in 100,000, the source probability error is to assume that this is
the probability that the defendant is not the source, or, equivalently, that the
probability that the defendant is the source is 99,999 out of 100,000.

• The random match probability p(match) is confused with p(not guilty | match).
This is called the prosecutor’s fallacy. For example, if the random match prob-
ability is 1 in 100,000, the prosecutor’s fallacy is to assume that the probability
of the defendant being innocent is also 1 in 100,000, meaning that the probabil-
ity of his being guilty is 99,999 out of 100,000.

Here’s an exercise illustrating this. The following instructions were given to law
professionals as part of a study (see Hoffrage et al., 2000); they are phrased in terms
of conditional probabilities. Try to work out the answers. The answers are at the end
of this handout.

You are trying a rape and murder case. The expert witness tes-
tifies that there are about 10 million men who could have been
the perpetrator. The probability of a randomly selected man
having a DNA profile that is identical to the trace recovered
from the crime scene is approximately 0.0001 percent. If a man
has this DNA profile, it is practically certain that a DNA analy-
sis shows a match. If a man does not have this DNA profile,
current DNA technology leads to a reported match with a prob-
ability of only 0.001 percent.

A match between the DNA of the defendant and the traces on
the victim has been reported.

1. What is the probability that the reported match is a true
match, that is, that the person actually has this DNA pro-
file?

2. What is the probability that the person is the source of the
trace?

3. Please render your verdict for this case: guilty or not
guilty?
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Conclusion

Just to repeat:

Whenever faced with a problem involving probabilities, try
to create a natural frequency representation. You will find
the problem easier, and you will explain it more clearly to

other people.

3. Suggested reading: risk and empathy

• Gigerenzer (2003), Reckoning With Risk: Learning To Live With Uncertainty.
Penguin, £8.99 paperback (ISBN 0-140-29786-3). Excellent and very readable
indeed (shortlisted for the 2003 Aventis science book prize), it deals with un-
certainty in medical diagnosis (and what to do about it) but also the use of fo-
rensic evidence in the courtroom, and how to mislead people by exploiting their
innumeracy. [Copies in Experimental Psychology, Churchill, and Heffers, at the
least. Previously published in 2002 by Simon & Schuster as Calculated Risk:
How To Know When Numbers Deceive You.]

• Your ability to empathize with staff and patients will strongly influence your
skill as a doctor. Can you imagine difficult situations from the other person’s
point of view, even after the event? It helps when you taking things too person-
ally; there is much more thoughtlessness than malice, and much more fear than
hate. This is empathy: the ability to read other people’s minds. If you’re not
very empathetic, do you know? Simple tactics can improve your empathy skills;
try Tucker-Ladd (1996-2000), chapter 13, section 2, or similar (free at
http://mentalhelp.net/psyhelp/); some of the rest of the book is fairly good,
too.
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Answers to courtroom scenario

Short answers.

1. p(true match | reported match) = 0.09
2. p(source | reported match) = 0.009
3. Up to you…

Full answer. It is, of course, easiest to re-express everything as natural frequencies
in a frequency tree. Here’s one way of drawing it:

Now the questions are easy:

1. The probability of a given reported match being a true match is the number of
matches where the DNA is identical to the crime scene (1+9) divided by the to-
tal number of matches (1+9+100), which is 10 in 110, or 0.09, or 9%.

2. The probability that the person is the source of the trace, given a reported
match, is the number of matches where the person is the source (1), divided by
the total number of matches (1+9+100), which is 1 in 110, or 0.009, or 0.9%

3. Would you convict on that evidence?

As you’d expect, even professional lawyers did badly on this question, until it was
rephrased for them into natural frequencies (see Hoffrage et al., 2000). With the
question expressed in probabilities, about 1% of law students and 10% of law pro-
fessionals got the answers right; when expressed in natural frequencies, 40% of stu-
dents and 70% of professionals succeeded. Guilty verdicts were more common when
the evidence was presented as probabilities than when it was presented as frequen-
cies.


