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Part 1. quick summary

I’m not a statistics expert, so caveat emptor. If you spot any mistakes or have sug-
gestions to make this document more useful, please let me know (at
rudolf@pobox.com). Thanks to Mike Aitken (MRFA) for helpful comments!

1.1 Overview of this document

e  First, in Part 1, we'll summarize what most people want to know to get going —
how to choose and perform an ANOV A. Nobody reads ANOV A theory before
starting to analyse, much as statisticians may complain about this, so we might
as well be pragmatic. This can be combined with Part 3, which talks about
common things that are required in ANOV A analysis, and Part 5, which shows
how to perform an ANOVA in SPSS.

e Then, in Part 2, we'll cover what ANOV A does and what it assumes — things
people should have known before running an ANOV A but probably didn’t.

e In Part 3, we'll walk through what most people need to do to complete an
ANOVA analysis.

e InPart 4, we'll look at experimental design and analysis issues, such as how to
analyse changes from baseline, and when and how to perform post hoc tests.

e InPart5, we'll look at how to use SPSSto perform different ANOVAS.
e InPart 6, we'll cover complex theory that most people will never need.

e InPart7, we'll look at avariety of ANOVA models that can be used for differ-
ent experimental designs. These will range from the very simple (one-way
ANOVA) through the very useful (mixed designs with both between- and
within-subject factors) to the very complicated. This material isfor reference.

e In Part 8, we'll revise mathematics that is touched on occasionaly elsewhere,
and cover very advanced mathematics that underpins computer calculations of
complex ANOVAs.

e InPart9, there'saglossary.

1.2 Background knowledge

This handout is aimed at graduate students who need to perform analysis of variance
(ANOVA). Covering the theory of ANOVA is one thing; putting it into practice in
psychology and neuroscience research unfortunately means using the technique at a
level at which even statisticians debate the proper methods. Thisis depressing to the
beginner; | hope this handout helps. It's also a reminder to me of information I’ ve
collected about different ANOV A designs. It covers simple ANOVA and also some
complex techniques that are not often used but rather powerful. It assumes a basic
knowledge of datistics. Explicit coverage of the background knowledge can be
found in my NST 1B Psychology handouts, available at

www.pobox.com/~rudolf/psychol ogy

and coverage of exploratory data analysis (EDA) and ANOVA can be found in Mike
Aitken’'s NST |l Psychology handouts, available at

foxfield.psychol.cam.ac.uk/ stats/ default.html

1.3 Quick summary: choosing and performing an ANOVA

We'll presume your experiment was sensibly designed and free of confounds. No
amount of analysis will fix a bad design. Now, the purpose of ANOVA isto pre-
dict a single dependent variable on the basis of one or more predictor variables,



and to establish whether those predictors are good predictors or not. Therefore
you need to do the following:

e |dentify your dependent variable.

e Identify your predictor variables.

e Establish whether your predictor variables are discrete (e.g. sham/lesion,
sham/core/shell, day 1/2/3) or continuous (e.g. body mass). We will call
discrete variables factor s, and continuous variables covariates. The number of
discrete values that a factor can take is known as the number of levels of that
factor.

e For most psychology designs, the key unit of ‘relatedness’ is usualy the sub-
ject. It then suffices to establish whether your predictor variables are between-
subjects variables (e.g. operative group; every subject is only measured at one
level of the factor, such as ‘lesion’) or within-subjects variables (e.g. test day;
each subject is measured at more than one level of the factor, such as ‘day 1,
‘day 2', and so on).

e You should now be able to identify your design (e.g. ‘one between-subjects
factor and two within-subjects factors’) using this document. The sections giv-
ing detail on each design aso give the SPSS syntax.

e You should check that the assumptions of ANOV A are met — for example, do
you heed to transform your dependent variable (by taking the square root, arc-
sine, logarithm, etc.) before analysis?

e Runthe ANOVA.

o If your ANOVA has within-subjects factors, check Mauchly’s test of spheric-
ity, which your software should have done for you. If the Mauchly test is ‘sig-
nificant’ (small p value), one of the assumptions behind within-subjects
ANOVA has been violated. Don’t use the normal df; use the corrected df — ei-
ther with the Greenhouse-Geisser (conservative) or Huynh—Feldt (better; Myers
& Well, 1995, p. 248) correction. Y our software should provide both.

e Interpret the results. You may need to perform further analyses post hoc to ex-
plain main effects or interactions that you find.

| use a notation for describing ANOVA models in which factors are written with
their number of levels as a subscript, covariates are written with ‘cov’ as a subscript,
S denotes subjects, factors/covariates in brackets with ‘S’ are within-subjects pre-
dictors, and unbracketed factors/covariates are between-subjects predictors. An
ANOVA with one between-subjects factor (A) and two within-subjects factors (U,
V) might be written like this:

dependent variable= A x (UxV x S)

As a more concrete example of this notation, suppose you measured locomotor ac-
tivity (dependent variable) in two groups of rats (sham/lesion). Each rat was tested
on six occasions. following one of three drug treatments (saline/low-dose co-
caine/high-dose cocaine), and in one of two rooms (hot/cold). We assume the
testing order for within-subjects factors was appropriately counterbalanced to avoid
order effects (see handouts at www.pobox.com/~rudolf/psychology). We could
write this design as:

locomotor activity = Group, x (Drugs x Room, x S)

In this document, | will try to use A, B, C... as labels for between-subjects factors
and U, V, W... aslabels for within-subjects factors, since it gets hard to read other-
wise when there are both between- and within-subjects factorsin a design.

Designs with both between-subjects and within-subjects factors are called ‘ mixed’
or ‘nested’ designs (Keppel, 1991, p. 563): variability due to subjects is ‘nested’
within variability due to the between-subjects factor(s), because each subject is only
tested at one level of the between-subjects factor(s).

1: Quick summary



1: Quick summary

If you have units of relatedness other than ‘subject’ (e.g. ‘plot of land’), but you only
have one level of relatedness, you can merely think of your design in the same be-
tween-/within-subject terms.

If you have multiple levels of relatedness, you will need a complex or hierarchical
design (Myers & Well, 1995, chapter 10); you should aim to understand the princi-
ples behind the designs discussed in this document. At the end we'll cover some hi-
erarchical designs, but thisis hard stuff.



2: ANOVA basics 8

Part 2: understanding the basics of ANOVA

2.1 The basic logic and assumptions of ANOVA

2.1.1 The underlying model

After Howell (1997, ch. 11). Suppose that the average height of UK adults is 175
cm, that of adult femalesis 170 cm, and that of adult malesis 180 cm. So ‘maleness
contributes, on average, +5 cm to an adult’s height (compared to the mean of all
adults), and ‘femaleness’ contributes, on average, -5 cm. Suppose we take a given
adult male. We could break his height down into three components: 175 cm for be-
ing an adult, 5 cm for being a male, and some other component that represents this
individual’s ‘uniqueness’, since there is of course variation in the heights of adult
men. We could write this model as

height = 175 cm + 5 cm + uniqueness

or in more general terms
helght ingividual mae = 4+ Trmale t Eindividual

where y is the overall mean (175 cm), 7qe iS the contribution for being a male, and
&individua 1S @ particular individual’s unigue contribution. We have written an expres-
sion for our dependent variable (height) in terms of predictor variables (the grand
mean and a factor, sex) and unpredicted variability. Let’s extend that principle.

2.1.2 An example: data and a structural model

Suppose 50 subjects are assigned to five groups. Each group reads a list of wordsin
a different way: one was asked to count the number of letters in each word, one to
think of a rhyme for each word, one to give an adjective that could be used with
each word, one to form a vivid image of each word, and one to memorize each word
for later recall. Later, al groups were asked to recall al the words they could re-
member. In ANOVA terminology, we have a single factor Group with five levels
(Groupy, Group,, ... Groups). Here are some results (Howell, 1997, p. 301):

No. words Group, Group; Groups Groups Groups Total
recalled Counting Rhyming Adjective Imagery Memorize
One 9 7 11 12 10
number, 8 9 13 11 19
one 6 6 8 16 14
subject 8 6 6 11 5
10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11
total T, = 70 To= 69 Ts= 110 Ts= 134 Ts= 120 Z X =503
n n; =10 n, =10 n; =10 n,=10 ns =10 N =50
mean X =7 ¥ = 6.9 X =11 X, =134 X5 = 12 X =10.06
SD s =1.83 $ =213 S =249 s, =4.50 =374 4,01
variance s£ =333 3 =454 $2=6.22 s3=2027 £=14 s?=16.06

For this data, we can specify amodel, just as we did before. Let

e X represent the score of personj in condition (group) i

e urepresent the overall mean score

o y; represent the mean of scoresin condition i

e 7 represent the degree to which the mean of condition i deviates from the over-
all mean (the contribution of conditioni), i.e. 7; = 4 — u
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e g represent the amount by which person j in condition i deviates from the mean
of his or her group (the ‘uniqueness of person j in condition i), i.e

£j = Xij =4
Since it’'s obvious that
Xij = p+ (i — ) + (X = 14;)
it follows that
Xij = L+ 7; + &

2.1.3 The null hypothesis

We will test the null hypothesis that there is no difference between the various
groups (conditions). We can state that null hypothesislike this:

Ho ity =ty = tig =ty = s = 1

In other words, the null hypothesis is that all means are equal to each other and to
the grand mean (), and that all treatment (group) effects are zero.

2.1.4 The assumptions of ANOVA

If 11; represents the population mean of condition i and & represents the population

variance of this condition, analysis of variance is based on certain assumptions about
these popul ation parameters.

1. Homogeneity of variance
We assume that each of our populations has the same variance:

Z=0l=02=02=0 =02

Theterm ag (where e stands for error) represents the error variance — the variance

unrelated to any treatment (condition) differences. We would expect homogeneity of
variance if the effect of any treatment is to add or subtract a constant to everyone's

score — without a treatment the variance would be o2, and if you add a constant to
avariable, the variance of that variable doesn’t change.

2. Normality

We assume that the scores for each condition are normally distributed around the
mean for that condition. (Since ¢;; represents the variability of each person’'s score
around the mean of that condition, this assumption is the same as saying that error is
normally distributed within each condition — sometimes referred to as the assump-
tion of the ‘normal distribution of error’.)

3. Independence of error components (= independence of observations)

We also assume that the observations are independent — technically, that the error
components (g;) are independent. For any two observations within an experimental
treatment, we assume that knowing how one of these observations stands relative to
the treatment (or population) mean tells us nothing about the other observation.
Random assignment of subjects to groups is an important way of achieving this. To
deal with observations that are not independent — for example, observations that are
correlated because they come from the same subjects — we need to account specifi-
cally for the sources of ‘relatedness’ to make sure that the residual error components



are independent; this is why we need within-subjects (repeated measures) designs
for this sort of situation. But we'll ignore that for the moment.

2.1.5 Thelogic of ANOVA

Since we have assumed that the distribution of the scores for each condition have the
same shape (are normally distributed) and have the same variance (homogeneity of
variance), they can only differ in their means. Now if we measure the variance of
any one condition, such as s, that variance will be an estimate of the common

population variance ¢? (remember, we assumed o7 =0Z =02 =02 =0f =072,

that is, homogeneity of variance). In each case, our sample variance estimates a
population variance:

2.2, 2..2. 2.2
0'1—51,0'2—32,...0'5—55

(where = denotes ‘is estimated by’). Because of our homogeneity of variance as-
sumption, each of these sample variancesis an estimate of of :

2.2, 2.2, 2.2
O, =9,0,=5,... O =%

To improve our estimate of of , we can pool the five estimates by taking their mean
(if ny =ny =n3=n4 =ns = n), and thus

where a is the number of treatments — in this casg, 5. (If the sample sizes were not
equal, we would gtill average the five estimates, but we would weight them by the
number of degrees of freedom for each sample, so variance estimates from larger
samples would get more weight.) This gives us an estimate of the population vari-
ance that is referred to as M S, (‘mean square error’), sometimes called M Syihin,
Or M Sgypjects within groupss OF M Ss/groups (' Mmean square for subjects within groups’).
Thisis true regardless of whether Hy istrue or false. For the example above, our

pooled estimate of o2 will be

o2 = 3.33+4.54+6.22+20.27+14.00 _ 9.67
5
Now let us assume that Hyistrue. In this case, our five samples of 10 cases may be
thought of as five independent samples from the same population (or, equivaently,
five samples from five identical populations). The Central Limit Theorem (see
handouts at www.pobox.com/~rudolf/psychology) states that the variance of
means drawn from the same population is equal to the variance of the population di-
vided by the sample size. If Hy is true, therefore, the variance of our five sample

means estimates ¢2/n:

2
O'e_ 2
n Sk
and so
o= ng

This is therefore a second estimate of a§ , referred to as M S, eatment OF M Syroup. ON
the other hand, if Hy is false, this will not be a good estimate of ¢2. So we have
found that M Sy, estimates a§ whether Hy is true or false, but M S;eament ONlY €sti-

mates o-g if Hp istrue. Therefore, if our two estimates of oﬁ , MS;eatment and M Syrory
are similar, thisis evidence that Hy istrue; if they are very different, thisis evidence
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that Hy is false. We will compare the two variance estimates with an F test, which is
designed gpecifically for comparing two variances (see handouts at
www.pobox.com/~rudolf/psychology): F = MS;eqment/ M Serror- If OUr F statistic is
very different from 1, we will reject the null hypothesis that the two variances
(MSyeament @d MSr) are the same, and hence reject the null hypothesis of the
ANOVA.

2.1.6 Expected mean squares (EMS)

Let’s formalize that. We've defined the treatment effect 7; as i — u, the difference
between the mean of treatment i (1;) and the grand mean («). We will also define

o? asthe variance of the true population’s means (uy, iz, .. ia):

o2 = 2= H) >z
‘ a-1  a-1

Technicaly, thisis not actually the variance — since we are working with parame-
ters, not statistics, we should have divided by a rather than a — 1 if we wanted the
variance. However, we can think of it as a variance without much problem.

We can then define, without proof, the expected value of the mean square terms:

E(MSqyor) = O-g
2
E(MSyeam) =02 + =1 = 0% 4 no?
where ¢ is the variance within each population and o2 is the variance of the
population means (1). So if Ho is true, af =0, 0 E(MS,citment) = E(MS4,or) » but
if Ho is false, E(MSyeqmert) > E(MSuror) -
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2.2 The calculations behind a simple one-way ANOVA (one between-subjects factor)

11

Let’s go back to the results in the table we saw earlier and conduct an ANOVA.
2.2.1 Calculations with means (conceptual) or totals (for manual calculation only)

Most ANOVA calculations are based on sums of squares. Remember that a vari-
ance is a sum of squared deviations from the mean (a ‘sum of squares’) divided by
the number of degrees of freedom. We work with sums of squares because they are
additive, whereas mean squares and variances are only additive if they are based on
the same number of degrees of freedom.

Purely for convenience, Howell (1997) tends to do the calculations in terms of
treatment totals rather than treatment means. In the table above, we have defined T;
as the total for treatment i. Totals are linearly related to means (T =nx). If you
multiple a variable by a constant, you multiply the variance of that variable by the
square of the constant. So since T = nX , we can see that

2
2 _ St
S 2



On the other hand, though calculating sums of squares may be easier in terms of
treatment totals, conceptually it is much easier to think in terms of means. We'll
present both for a while — first the definition in terms of means, and then, in brack-
ets, the formula in terms of totals. Ignore what’s in brackets unless you're doing
the calculations by hand. Eventually we'll just show the calculations in terms of
means. After all, you'll be using a computer for the hard work.

2.2.2 Calculating SSiotal, SSreatments @nd SSqrror

First, we calculate SS4 (‘total sum of squares’) — the sum of squares of all the ob-
servations (the summed squared deviations of each observation from the overall
mean), regardless of which treatment group the observations came from.

SSgta = 2 (X i)2{= > X —¥}

Now we calculate SS;;eqment- This represents the summed squared deviations of the
treatment mean from the mean of all treatment means, summed over each data
point. (Or, in terms of totals, the summed squared deviations of each total [T;] from
the mean of the treatment totals [ T ], all divided by the number of observations per
total.)

SSyreatment = 2 N(X; — Y)Z

- - -
T _
:Zn(F'—TF] =zniz(Ti -T)
_Z(Ti—-r)2
- n
, (ET)?
I W ey
n n na
_IT (EZ®?
L N |

where a is the number of treatments, n is the number of observations per treatment,
and N isthe total number of observations (= na).

Now we can calculate SSq,o. This represents the sum of the squared deviations of

each point from its group mean. Since SSgg = SSyeament T SSerror, the quick way to
obtain SSqr IS by subtraction:

SSerror =2 (x- Xi )2 = Sstotal - SStreatrmnt

Alternatively, we could have calculated SSq,o by working out an SS for each group
separately and adding them up:

SSyop1 =X (% —%)*=(9-7)7+(8-T7)" +...+(7-7)?

SSyop2 =2 (X — %)% =(7-6.9)* +(9-6.9)° +...+ (7 6.9)°

SSerror = O9group1 SSgroupl tot SSgroup 5

Both approaches give the same answer.

2: ANOVA basics
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2.2.3 Degrees of freedom

If there are N observations in total, df,a = N — 1. If there are a treatments, dfy;eatment
=a— 1. We can calculate the degrees of freedom for error like this:

Oferror = Oftotal — Of ireatment

Alternatively, we could calculate dfg, as the sum of the degrees of freedom within
each treatment; if there are n observations in each of a treatments, there aren — 1
degrees of freedom within each treatment, and so dfg,r = a(n — 1). This gives the
same answer (since dfygy — dfyreatmens = [N—1] —[a—1] =[na—1] —[a—-1] =na—a
=a[n-1)).

2.2.4 Mean squares
Mean squares are easy; just divide each SS by the corresponding number of df.
2.25TheF test

From the definitions of EM S above,

E(M St eatment) _ O'g +n0'12

E(Mserror) O'f

We can therefore calculate an F statistic

E = Mstreatmmt
M SG’TOT

and it is distributed as Fq, a1y — that iS, 8 Fyeatment df, error ar Under the null hy-
pothesis. So we can look up critical value of F in tables. If it’s ‘significant’ (unlikely
given the null hypothesis), we reject the null hypothesis and say that the treatment
did influence our dependent variable.

A very complicated asde: if H, is true and ©2=0,

E(Mstreatment) — O'g + nO'? and
E(Mserror) 0'3

E(MSeror)

error

13

although

therefore  under the null  hypothesis

EMSyeamen) _ 1, and so you'd think E[Ms“ﬂ) =1, the expected value of F

under the null hypothesis is actually E(F): M (Frank & Althoen, 1994, pp.

dferror -2

470, 513). | don't fully understand that; | suspected that the difference was that

EMSyeamen) E(Mstfem”m] because E(XY)=E(X)E(Y) only if X and Y are

E(MSeror) MS

error

independently distributed. MRFA has since pointed out the real reason: under the
null hypothesis, M Sy, is asymmetrically distributed. For asymmetric distributions,
E@Q/X)#YE(X), s0 E(/MSy ) #E(MSy,) - It's akin to the reasoning behind
using at test rather than a Z test when you estimate the population standard devia-
tion o using the sample standard deviation s. even though E(s)=E(o),

E(l/s)# E(/o).

2.2.6 ANOVA summary table

ANOVA results are presented in a summary table like this:
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Source d.f. SS MS F

Treatment a1 SSireatment SSireatment’ Ifireaiment M Syreatment/ M Serror
Error (S/treatments)  a(n-1) SSaror SSaror/ A error

Tota N-1=an—-1 SSqua SSita Kot [= 52]

Remember that ‘S/treatments denotes ‘subjects within treatments’; this is the
source of all our error variability in this example. Anyway, for our example, we can
now calculate al the SS:

2 2
SSig = X (X—X)? =Zx2—%=(92+82+...+112)—%=786.82

_3T? (EX)? (70°+69° +...+120%) 503

o w2
=>n(X —X =351.52
SStreatment = 2. N(% —X) N 10 0
SSerror = SStotal - Sstreatr’nen’( =435.30
so our ANOVA tablelooks like this:
Source d.f. SS MS F
Treatment 4 351.52 87.88 9.09
Error (S/treatments) 45 435.30 9.67
Tota 49 786.82 16.06

Our F has (4, 45) degrees of freedom. We could write F4 45 = 9.09, and look this up
to find an associated p value (p = 0.00002).

2.2.7 SSyeatment fOr unequal sample sizes

What if our group sizes were not equal ? Previously we had defined

SSieatment = 2 N(% — X)*

(X -®)? _ X% -mX)?_ 5(T-T)? ]|
n n n
2 (ZT)?
I 1 010 s
n n na
_IT (2%
n N

which applies when &l groups have n observations. If the group sizes are unegual,
we simply multiply the deviation of each score from its treatment mean by the num-
ber of scoresin that treatment group (so the larger one sample is, the more it con-
tributes to SSyeatment):

SSyreatment = 2 M (% —i)z
_IR(% =% _ X% -n%? _X(T-T)?

n; n; n

I (0P
T n N

2.2.8 Pictorial representation

What the ANOV A technique has done is to partition total variation from the overall
mean (SSa) iNto variation from the overall mean accounted for or predicted by the
treatment or group difference (SSyeament OF SSyroups) @Nd further variation within the

14
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groups due to inter-subject variability (SSeror OF SSs/groups)- If the variation attribut-
able to the model is large, compared to the error variability, we will reject the null

hypothesis.
Total variation Predicted by model Residual (error)
100 - 100 - (treatment or group effect) 100 - (subject variation within groups)
° ° °
80 - ° H 80 -| ° H 80 -| ° H

40

o o
group 2
60 60 mean group 3 9 60
° ° mean  ®
overall | o lll, | ° °
mean d d b
40 - 40 -
group 1 b4 * °

[ ] L] Y
[} [ ] ®
° mean o
20 1 20 - 20 4
: :
0 group 1 group 2 group 3 o o
SSiga =X (x=%)* SSyeetment = XN (% —%)? SSeror = X (X~ %)
dftotal =N-1 dftreatment =a-1 dferror =N-a

The sum of sguares is the sum of the Do you see now why we've been
squared lengths of the vertical lines multiplying the deviations by the
(deviations from the mean). group sizeto find SS;eament?

Another way to look at ANOVA is this: the hypothesis test we have performed ef-
fectively compares two models (Myers & Well, 1995, p. 440-1): one (restricted)
model allows for the effects of a mean only — all other variability is ‘error’; the
other (full) model allows for the effects of a mean and a treatment (and everything
elseiserror). If the full model accounts for significantly more variability than the re-
stricted model, we reject the null hypothesis that the treatment has no effect.

2.2.9 Relating SS calculations to the structural model
Note that our structural model was this:

Xij :/,l+Ti+€ij
Ti=M -l
&; = Xjj — 4;

and our SS were these:

SSipta = 2 (X i)2
SSyeatment = 2 N(% —X)?

SSaror =X (X=X )2 = SSiota — SStreatment
See the similarity? We can prove that the one follows from the other. This is not
something we have to do routinely, but it demonstrates how the sums of squares
(SS) are derived directly from the model. Our model was this:

Xij :ILl+Ti +gij
or
Xij = pu+ (s — 1)+ (X — 1)

Rearranging to express the left-hand side as a deviation of each score from the over-
all mean:

Xij —u = — ) + (X5 = 14)



Squaring each side:
(X _/1)2 = (i _,U)2+(Xij —ﬂi)2+2(ﬂi = 1) (X = 14;)
Summing over i and j:
a n 2 a 2 a n 2 a n
2X(Xij— ) =nZ(p — )"+ X2 (X — )"+ 222 (i — 1) (X — 147)
i i ] ]
The far-right term is actually zero:

3

—M3

- (i — 1) (X — ) :i(ﬂi _,U)er;:(xij - H4)

- H)x0

Il
O - Mo
/\

.. since the sum of deviations of all observations about their mean is zero. So we're
|eft with:

_Mm
_M:

2 a 2, &3 2
(X — 1) =nZ (= )"+ XX (X5 — )
i i
SSiota = SSa + SSeror
The degrees of freedom are similarly related:

Ofiota = Of s + Oferror

2.3 Regression ANOVA: the other way to understand the basic logic

2: ANOVA basics
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2.3.1Linear regression in terms of sums of squares

Suppose that in some way we can measure the risk of a heart attack (cal it Y) in
many 50-year-old men. If we then want to predict the risk of a heart attack in an un-
known 50-year-old man, our best guess would be the mean risk of a heart attack

(). If we call our predicted variable Y, and a predicted individual value ¥, then
our best guess could be written

<>
1l
<

We could also writeit like this:
y=y+¢

where ¢ represents ‘error variability’ or natural variation. The error in our best guess
would be the same as the natural variability in Y — it would be described by some

way by the standard deviation of Y, s,, or the variance, 33 The sample variance
(which estimates the popul ation variance), remember, is

2 > (y-y)?
YT

This variance, like any variance, is the sum of sguared deviations about the mean
divided by the number of degrees of freedom that the variance estimate is based on.
Because they are conveniently additive, we could write the variability in our esti-
mate just in terms of the sum of squared deviations about the mean — the sum of
sguares:



SSy =SS = (¥~ 9)?

Thisisthe total variability in cholesterol, so it's sometimes written SS;i4. Now sup-
pose we also measure cholesterol levels (X) for each of our subjects. We now have
(%, y) pairs (cholesterol and heart attack risk) for each subject. We could predict Y

from X using linear regression. We would call the predicted variable Y, and we'd
cal an individual predicted value y. A standard linear regression (see handouts at

www.pobox.com/~rudolf/psychology) will give usthis equation:
Y =a+bX
where a isthe intercept and b is the slope. We could also write our model like this:
y=y+e=a+bx+e

Now our best guess of the heart attack risk of a new subject should be rather better
than § =¥ ; if we measure our new subject’s cholesterol as well, we can make what

should be a better prediction:
y=a+bx

The error in this prediction will related to the deviations between the predicted
value, ¥, and the actual value, y. We could write this either in terms of avariance...

2 T(y-9°

Sresidual = R

... Or asasum of squares:
SSiesiqua =2 (Y~ 9)°

If cholesterol is somehow linearly related to heart attack risk, the error in our pre-
diction, which was SS,5, has now been reduced to SS,,... Therefore, the amount of
variability in Y that we have accounted for by predicting it from X, which we can
write as SSiegression OF SSode OF SS; , is based on the difference between the pre-

dicted values and the overall mean:
SShoge =2 (Y- ¥)?
It's also true that

Y(Y-9’=X(I-9’+Z(y-9)?
SSiota = SSiodet + SSresidua

and that

dfiota = Hfinodel + A resicua
n-1=1+(n-2)

Since we have already calculated the overall mean, and the regression line always
passes through the overall mean, the regression model has one df (its slope). That is,
people vary in their cholesterol levels (SSy), they vary in their heart attack risk (SSy
= SSa), @ certain amount of the variability in their heart attack risk is predictable
from their cholesterol (SS; =SS ), and a certain amount of variability is left

over after you've made that prediction (SSiesgua = SSerror)- INcidentally, the propor-

2: ANOVA basics
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tion of the total variability in Y that’s accounted for by predicting it from X is aso
equal to r?:

2_SSy _ Sy
SSY SStotal

We can illustrate SSia, SSiodes aNd SSiesqua like this:

Total variation Variation predicted by model Hov Residual (error) variation
(predicted by regression line) d\'@$$
(o
1.5 - 1.5 4 . o 157
L] \\
1.0 A 1.0 . 1.0 |
0.5 { T [ overall o5 4 0.5 1
J. 1 i l& s mean 0
> > >
0.0 4 0.0 4 o d 0.0
L]
-0.5 A -0.5 . -0.5 |
1.0 T " : v 1.0 T r . " 1.0 . T :
0 1 2 3 4 0 1 2 3 4 0 1 2 3
X X X
_ )2 =S (§-V)? = y)?
SSiota =2(Y—Y) SSioger = 2(Y-Y) SSeror =2(Y-Y)
dftotal = N _1 dfmodel :1 dferror = N - 2

What would it mean to alter SSyge and SSiesqua? |f you pulled al of the scores
‘further away’ from the regression line (if a point is above the regression line, move
it up; if it's below, move it down) without changing the slope of the regression line,
you'd increase SS.or Without altering SSyoqe- |f You atered the slope of the regres-
sion line but moved the individual scores up or down to keep them the same distance
from the line, you'd increase SS,oge Without changing SSiegua-

2.3.2 Linear regression asan ANOVA

We can use this way of writing a linear regression model to express linear regression
as an ANOVA. If there is no correlation between X and Y, then predicting Y from X
won't be any better than using y as our estimate of a value of y. So we could obtain

ameasure of the total variability inY:

_Z(y-9* _ SSua

MS, =M =7 == =2 ==
- total

and we could similarly obtain

_2(9-9)* _ SSioqe

MSodel =5$

(y-9° <
MS esdua =MSgror = Srzesidual = (:_ 2y ) = (ijsrwdual

residual

If the null hypothesis is true and there is no correlation between X and Y, then some
of the variation in Y will, by chance, fit alinear model, and contribute to SSge. The
rest will not, and will contribute to SS,egqua- The corresponding M S values, once we
have divided by the df, will be measuring the same thing — the variability of Y. That
is, under the null hypothesis, E(M Syoge) = E(M Saror). On the other hand, if thereisa
correlation, and Y varies consistently with X, then SS,,q¢ Will contain variation due
to this effect as well as variation due to other things (error), but SSegqua Will only
contain variation due to other things (error). Therefore, if the null hypothesisis false,
E(MSiodel) > E(MSaror). We can therefore compare M Sioge t0 M Sqpor With an F test;



if they are significantly different, we rgject the null hypothesis. Our ANOVA table
would look like this:

Source d.f. SS MS F

Model 1 SSiodd SSmode/ Wfmoded M Simodet/ M Serror
Error (residual) N-2 SSarror SSerror/ Aferror

Total N-1 SSota

where N is the total number of (X, y) observations. To calculate a regression
ANOVA by hand, SS,,;4 can be calculated as s?(n—l) and SS;,.q¢ can be calculated

2
as r“xSS, -

2.4 Factors versus covariates

2: ANOVA basics
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We've seen that we can perform an ANOVA to predict our dependent variable using
a discrete variable, or factor, that has severa ‘levels — as when we asked
whether word recall differed between five groups that had read the same word list in
different ways. We saw a pictorial representation of a three-group example. We've
also seen that we can perform an ANOVA to predict our dependent variable using a
continuous variable, or covariate, asin our linear regression example, and we've
seen apictorial representation of that.

The mathematical technique of ANOV A does not ‘care’ whether our predictor vari-
ables are discrete (factors) or continuous (covariates). We'll see that in Part 6 when
we look at the idea of ageneral linear model (p. 84).

However, the way most people use covariatesis slightly different from the way they
use factors. If you are running an experiment, you do not generally assign subjects
to different values of a continuous variable (covariate) — you assign subjects to dif-
ferent levels of a factor, with several subjects per level (group). Therefore, rea-life
covariates are generally things that you measure rather than things that you ma-
nipulate. As a consequence, most people use covariates and analysis of covariance
(ANCOVA) as a way to increase the power of ANOVA — if you can account for
some of your ‘error’ variability by using a covariate to predict your dependent vari-
able, thereisless ‘error’ variability and therefore there may be more power to detect
effects of the factors that you're interested in.

2.5 Assumptions of ANOVA involving covariates

Take a common design involving covariates. a design with one between-subjects
factor and one between-subjects covariate. Suppose you have 100 children at your
disposal. You measure their 1Q. Then you randomly assign 50 children to receive
the standard method of maths teaching, and 50 children to receive a new method.
This represents the between-subject factor Method, with two levels. After some
time, you measure their mathematical problem-solving ability. But you suspect that
their 1Q may also play a part in determining their final score, not just the teaching
method — 1Q may be contributing to the ‘error’ (unmeasured) variability in the
scores of your two groups. So you enter 1Q as a covariate into your ANOVA model.
This covariate may therefore account for some of the previously-unmeasured vari-
ability, reducing your ‘error’ term, and increasing the power to detect an effect of
teaching method.

If you use ANCOVA in this way, there are a few assumptions (Myers & Well, 1995,
pp. 439-440; Howell, 1997, p. 587):

o that the relationship between the covariate and the dependent variableislinear;
e that the regression slopes relating the covariate to the dependent variable are the
same in both groups — homogeneity of regression.



This is the design discussed in §7.12.1 (p. 138). The second assumption is directly
testable, and the method for testing it is discussed in §7.12.2 (p. 144).

A final assumption in this sort of design isthis:

o that the covariate and the treatment are independent (Myers & Well, 1995, p.
451). If thisis not the case, interpretation is very difficult. Using X as a covari-
ate removes the component of Y predictable from X. If the treatment influences
X or is otherwise predictable from X, performing an ANCOVA will not simply
remove nuisance variability from Y; it will remove part of the effect of the
treatment itself. For example, if you had measured |Q at the end of the experi-
ment and the teaching method actually influenced 1Q, interpretation would be
very hard; similarly, it would be hard to interpret if you had assigned high-1Q
students to one teaching method and low-1Q students to another. This can also
be a problem in situations when you are using (for example) patient groups and
IQ (if the patients have a different 1Q to the controls), or sex and body mass
(males have a higher body mass).

2.6 ANOVA with two between-subjects factors

2: ANOVA basics
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We can extend our basic one-way ANOVA to two factors. Suppose we have two
factors, one with two levels and one with five levels; this design would be called a 2
x 5 factorial. Suppose we repeat our previous experiment (Howell, 1997, p. 403) but
for young and old subjects. Factor A is age (young versus old); factor B is task type
(counting, rhyming, adjective, imagery, intentional). Suppose our results look like
this:

No. words B1 B, Bs B4 Bs Total
recalled Counting Rhyming Adjective Imagery Memorize
Ax 9 7 11 12 10
old 8 9 13 11 19
6 6 8 16 14
8 6 6 11 5
10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11
total TAlBl =70 TAlBZ =69 TAlBs =110 TAlB4 =134 TA155 =120 TA]_ =503
A, ; 8! 10 14 20 21
young 6 . 7 11 16 19
; 4 8 18 16 17
This dotted | 6 ! 10 14 15 15
line ! 7 4 13 18 22
encloses ! 6! 7 22 16 16
onecdl. . 5. 10 17 20 22
Thisisa | 7 6 16 22 22
very | 9, 7 12 14 18
important 1 7. 7 11 19 21
termto Taze1 =65 Tazm2 =76 TA253 =148 Tazea =176 TA255 =193 Tar =658
understand!
TB]_ =135 TBZ =145 TB3 =258 TB4 =310 Tgs =313 T=32x=1161

Note our definition of cell — one particular (A, B) condition, such as A,B; (shown
here with a dotted line around it).

2.6.1 Structural model and terminology (main effects, interactions, ssimple effects)

Our ANOVA must allow for the effects of factor A, and factor B. It should also al-
low the possibility that A and B interact — that the effect of factor A depends on
the level of factor B, or vice versa. For example, suppose that young people are gen-
eraly better, regardless of task type; we would call this a main effect of factor A
(age). A main effect is an effect of a factor regardless of (ignoring) the other fac-
tor(s). Suppose that the ‘memorize’ condition gives better recall than the ‘counting’
condition, regardless of age; we would call this a main effect of factor B (task type).
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On the other hand, perhaps young people have a particular advantage in the * memo-
rize' condition but not in other conditions; this would be an interaction between A
and B, written ‘A x B’ or sometimes ‘AB’. We may also define, for later, the term
simple effect: thisis an effect of one factor at only one level of another factor. For
example, if the ‘memorize’ condition gives better performance than the ‘adjective’
condition considering young people only, this is a simple effect of factor B (task
type) at the ‘young' level of factor A (age).

We can specify amodel, just as we did before:;
Xijk = u+ 05+ B + off; + ey

where

e Xk = the score of person kin condition A;B;

e 4 =theoveral mean score

e ¢; = the degree to which the mean of condition A; deviates from the overall
mean (= the contribution of condition A)), i.e. & =u, —u . By this definition,
Yo, =0.

e S = the degree to which the mean of condition A; deviates from the overall
mean (= the contribution of condition B), i.e. f3; =Ug — M. By this definition,
>p;=0.

e afj = the degree to which the mean of condition A;B; deviates from what you'd
expect based on the overall mean and the separate contributions of A; and B; (=
the interaction A x B), i.e. of; =HUnpg, —(u+o; + ;) . By this definition,

Lof; =2offy =0.
i j

* g = the “error’ or amount by which person k in condition A;B; deviates from
the mean of his or her group (the ‘uniqueness’ of person k in condition A;B;),
i.e. &y = Xjj — (4j + o5 + f; +ffj) . By our usua assumption of normal dis-

tribution of error, & is normally distributed with mean 0 and variance crg .

2.6.2 Expected mean squares

Although we won't deriveit, the EMS terms are:

Source E(MS)

A ol +nboi
B ol +nach
AB(AxB)  o2+nos,
Error ol

(Note that these EM S values assume that the factors are fixed factors; see p. 31.) So
we should be able to form F ratios based on the error term. For example, if the null

hypothesis that factor A has no effect is true, ua; = ua, = 0, S0 02 =0 and E(MS,)
= E(MSyor). If this null hypothesisisfalse, E(IMS,) > E(M Syror). SO theratio

E(MS,) _c2+nboi
E(Mserror) 65

can be tested using an F test with df, and dfe,o, degrees of freedom.
2.6.3 Degrees of freedom

There are n = 10 subjects per (A, B) condition (per cell), so N = 100 observations in
all. Therefore, dfiy = 99. By our usua rules, dfs = 1 and dfg = 4 (one less than the
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number of levels). The interaction term, written ‘A x B’ or ‘AB’, represents the
possibility that the effects of factors A and B represent each other. The df for an in-
teraction term A x B is aways the product of dfy and dfg — in our example, 4. So
our total df are partitioned like this:

Ofyqrq = df o + Of g + df g5 + Oy
99=1+4+4+ dfgo

so we have 90 error df in our example.
2.6.4 Sums of squares

Similarly,
SSiota =SSp +SSg +SSpg + SSeror

SSa is calculated exactly as before: the sum of squared deviations of every obser-
vation from the grand mean.

2

SSi = X (X— y)z[z 3 X2 _M}

n

The SS for factor A is calculated exactly as we would if this were a one-way
ANOV A without the other factor. The same's true for SSg. That is, we take the sum
of the squares of the deviations of the means of each A condition (A, A;...) from the
overall mean, summed over every observation. (In terms of totals, it's the sum of the
squares of the deviations of the totals of each A condition — Ay, A,, ... — from the
overall mean total, divided by the number of observations on which each mean was
based.) In our example, since there are 2 A conditions and each is made up of n ob-
servations per cell and 5 cells (= b = levels of B) per A condition, there are nb ob-
servations contributing to each A condition mean. So:

ey o2 ZTA=T) IR (%P

ey w2 _Z0-T) 3T (Zx?
SSp = 2.na(%s = %) {_ na  na N

To find the interaction term SS,g, we calculate an intermediate value, SS.qis, Which
measures the variability of the cell means. Since cell variability can be dueto A, B,
or AB, we can see that SS.qis = SSa + SSg + SSag, and therefore calculate SSyg this
way. SS.s IS the sum of the squares of the deviations of individual cell means from
the grand mean, summed over each observation. (In terms of totas, it's the sum of
the sguares of the deviations of individual cell totals from the grand mean total, di-
vided by the number of observations that contributed to each cell mean — i.e. the
number of observations per cell.) Whew.

_2(Tas -T)? _ YT (29)°

SSeats = 2 N(Xpg — X)? ; s N

SSpg = SSeis — (SSa +SSg)
To find the error term, we know that
SSicta = SSa +SSg +SSag + SSeror = SSeeits + SSerror
so we can find SSyor by subtraction. Alternatively, we could calculate SSyor as the

grand sum of the sums of the sguares of the deviations of individual observations
fromtheir cell means.

2: ANOVA basics
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2.6.5 Relating SS calculations to the structural model

Note that our structural model wasthis:

Xijk = u+0 + B + offy + &y
O =Hp —H
B =g —u
of; = Has, —(u+oi+pBy)
&ijk = Xijk — (1 + o5 + B + o)
and our SS were these:
SSota ZZ(X_X)Z
SS, =X nb(X, - X)?
SS; = ¥ na(Xg — X)?

SSug =2 N(Xag — X)% - (SS, +SSg)
SSuror = SSigtal — (SSA +S5+ SSAB)

See the similarity?

2: ANOVA basics

2.6.6 ANOVA table
WEe've ended up with this:
Source of variation d.f. SS MS F
Between cells dfs+dfg+dfag SSaais
A a-1 SS, SS,/dfp MSa/M Syror
B b-1 SS; SS:/dfg MSs/M Sy or
AB (A xB) (a-1)(b-1) SSag SSpp/dfag MSae/M Saror
Within cells (= error = S/cells)  ab(n-1) SSaror SSaror/ Herror
Totdl N-1=abn-1 SSga SSia/ dfigia [= 5%

2.7 Within-subjects (repeated measures) ANOVA

23

Principle: if a set of measurements are more correlated than we would expect
by chance, we must account for this correlation. We can say that these measure-
ments come from the same ‘subject’ (in psychological terminology), or that this
measure was ‘repested’.

Suppose we have one within-subjects factor. Call it U. Let’'s suppose we've meas-
ured all our subjects in three conditions (U, hot, U, warm, U; cold), once each, and
have counterbalanced appropriately to avoid nasty order effects. All we haveto dois
to partition the sum of squares so as to account for the fact that we've measured
subjects several times each...

2.7.1 Structural model

Our structural model is either one of these two:

Xij =p+7m +a; +& (Model 1: ‘additive’)
X = u+7; +a; +7ro;; +& (Model 2: ‘nonadditive’)

where
e X isthe dependent variable for subject i in condition U;
e pistheoverall mean



e 7 is the contribution from a particular person or subject (subject i, or S):
T =Hs M-

e ¢ is the contribution from a particular level (level j) of the factor U:
oy =Hy, —H.

e 7y is the contribution from the interaction of subject i with treatment j:
i = sy, —(u+m +a;) . Thisinteraction would reflect that the subjects re-

sponded differently to the different levels of U.
e g is everything else (the experimental error associated with subject i in condi-
tion j). In Model 1, this will be g; = X;; —(#+7; +¢;) . In Modél 2, this will

be 8ij = X” —(ﬂ+ﬂ'i +0(j +ﬂ'0,’”) .

These two models differ in the presence or absence of za;;, the interaction of U with
a particular person (Howell, 1997, pp. 452-454). Including it makes for a realistic
model — it islikely that subjects do not all respond equally to all conditions (levels
of U). However, if we measure each person in each condition once, we will not be
able to measure differences in the way subjects respond to different conditions inde-
pendently of other sources of error such as measurement error. (To do that, we'd
need to measure subjects more than once per condition, and then we'd need a differ-
ent model again!) This is another way of saying that the S x U interaction is con-
founded with — is! — the ‘error’ term.

2.7.2 Degrees of freedom
We partition the df like this:

dftotal = dfbetween subjects T dfwithin subjects

df within subjects — dfy + df error scu

Therefore

df ot = Hfpetween subjects T dfy + dfgror
dftotal = N _1
df petween subjects = s-1
Ofrror = Afiora — Ifpetween subjects
where s is the number of subjects, u is the number of levels of U, and N is the tota

number of observations (= su). We could also write dfpeween susjects 8 dfs, which you
sometimes see.

2.7.3 Sums of squares

Similarly, we can partition the SS like this:

SSiotal = SSpetween subjects SSyithin subjects
SSithin subjects = SSy +SSyrorscu
SSiota = SSpetween subjects T SSy + SSaror

We can define our SSas usudl...
SStotal =3 (X_ i)2
SSy =X s(x - x)
SSpetween subjects — 2 U()_(s - X)2
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where s is the number of subjects and u is the number of levels of U. X, represents
the mean for a particular level of U (across subjects), and Xg represents the mean

for a particular subject (across levels of U). Our total number of observations will be
N = su.

2.7.4 EMS and ANOVA summary table

The EMS depend on which model we use;

Source of variation Model 1. E(MS)  Mode 2: E(MS)

Between subjects (S) 52 1 g2 ol+uc?
U ol +s0} 02+ 035 +5s0%
Error 2 2 52

Oe O¢ T 0ys

This means that in Model 2 it's rather hard to do a proper F test for the ‘between
subjects’ factor, since there’s no term whose E(MS) is identical t0 E(M Speween subjects)

except for the presence of 2, the relevant variance for the between-subjects factor.
On the other hand, who cares. If thisterm were significant, all it would tell usis that
subjects are different, which is hardly earth-shattering. Either way, we have no
problem testing U: the proper way to test for an effect of U isto do an F test com-
paring MS, to MSyqr-

If Model 1 istrue — if subjects respond equally to the treatments; if the effects are
additive — we will have more power to detect effects of U, since if the null hy-
pothesis (that U has no effect) isfalse,

E(MSy_mar) _ T +50% S 0% +04s+505 _ EMSy_moda2)
E(Mserror—modd 1) 0'3 O'g + O-LZJS E(M Serror—modd 2)

and the bigger the ratio of MS, to MS,,, the bigger the F ratio, and the more likely
the effect isto be ‘significant’” (Myers & Well, 1995, p. 244; Howell, 1997, pp. 452-
454).

You may be thinking ‘the calculations for the two models are exactly the same in
practice, so why all this fuss? You'd be right — unless you wanted to estimate the
proportion of variance accounted for by a particular term (Myers & Well, 1995, pp.
242, 252-255). Seep. 112.

2: ANOVA basics
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2.8.1 Short version

1. Any ANOVA involving within-subjects factors has a potential problem.
Thereisan assumption known as ‘sphericity [of the covariance matrix]’. If
this assumption is violated, Type | error rates will be inflated (if the null
hypothesis is true, you will get too many results that you will declare ‘sig-
nificant’ than you should).

Mauchly’s test of sphericity checks for this. A significant Mauchly’s test means that
the assumption is likely to have been violated. But it's not a very good test (see be-
low), so we should probably ignore it.

2. Correct the df for any term involving a within-subjects factor, and the cor-
responding error df, by multiplying them both by a correction factor. The
correction factor is known as ‘epsilon’ (). If the sphericity assumption is not
violated, e = 1 (so applying the correction changes nothing). Y ou do not need to
correct any terms that have only between-subjects factors. And you can never
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violate the sphericity assumption for a within-subjects factor that has only 2
levels.

3. Usedther the Greenhouse-Geisser or the Huynh—Feldt epsilon. The Green-
house-Geisser one (sometimes written £) is probably a bit too conservative;
the Huynh—Feldt one (sometimes written £ ) is better (Myers & Well, 1995, p.
248; Howell, 1997, p. 465) — but more detail below.

SPSS reports Mauchly’s test and both the G-G and H-F corrections whenever you
run a within-subjects ANOV A using its menus.

Just to confuse you, there are actually several different approaches:

e NOT THE BEST: Look at the results of Mauchly’s test; apply a correction (G—
G or H-F) if and only if Mauchly’s test is significant for a factor that’s part of
the term in question, indicating a violation of the sphericity assumption. Thisis
not ideal, because Mauchly’s test isn't very reliable (Myers & Well, 1995, p.
246; Howell, 1997, p. 466, and see below).

e NOT THE BEST: Always use the Greenhouse-Geisser correction. Too conser-
vative.

e Good and simple: Always use the Huynh—Feldt correction. This is not to-
tally ideal because the H—F procedure tends to overestimate sphericity (be a bit
too optimistic) (see refs in Field, 1998), but it's pretty good; Myers & Well
(1995, p. 248) recommend it.

e  OK but awkward: usethe average of the £ and € .

e Good: Look at the estimated epsilons (G-G £ and H-F ¢); if they're in
theregion of 0.75 or higher (in sometextbooks, if £ >0.75) usethe H-F & ;
if below, usethe G-G £ (Howell, 1997, pp. 465-466).

Of course, if you really want to avoid Type | errors, you'd be predisposed to using
the G—G correction (conservative); if you'd rather avoid Type Il errors, you'd be
predisposed to using the H— correction (more liberal).

2.8.2 Long version

Sphericity is the assumption of homogeneity of variance of difference scores (Myers
& Well, 1995, p. 244-250); see also www-staff.Iboro.ac.uk/~hutsb/ Spheric.htm.
Suppose we test 5 subjects at three levels of A. We can therefore calculate three sets
of difference scores (Az— Ay), (A, —A;), and (A3 —Ay), for each subject. Sphericity
is the assumption that the variances of these difference scores are the same. Here are
two examples:

Data set A: exhibiting sphericity
(homogeneity of variance of difference scores)

A A, Az | difference difference  difference
SUb]eCt Az—A, A, — A, Az—Aq
S 21.05 7.214 26.812 19.598 -13.836 5.762
S, 6.915 29599 16.366 -13.233 22.684 9.451
S; 3.89 21 41.053 20.053 17.11 37.163
S, 11.975 12401 18.896 6.495 0.426 6.921
S 31169 34786 31.872 -2.914 3.617 0.703
mean 15.00 21.00 27.00 6.00 6.00 12.00
variance 124.00 132.00 100.00 208.00 208.00 208.00




Data set B: exhibiting nonsphericity

Aq Ay A; | difference  difference  difference
SUb]eCt Az —A, A, — A, Az—Aq
S, 17 3.9 6 2.1 2.2 4.3
S, 4.4 6.5 145 8 2.1 10.1
S; 7.8 13.3 18.6 53 55 10.8
S, 6.6 9.4 145 5.1 2.8 7.9
S 9.1 15.2 235 8.3 6.1 14.4
mean 5.92 9.66 15.42 5.76 3.74 9.50
variance 8.56 21.79 41.46 6.38 3.65 13.92

a(a-1

. H . .
In general, if there are a treatment levels, there are difference scores, and it

is assumed that they all have the same variance.

Obviously, the sphericity assumption cannot be violated if the within-subjects factor
has less than 3 levels.

The sphericity assumption will be met if thereisno S x A interaction (if there is ad-
ditivity). In this case, any difference score is exactly the same over subjects, so there
is zero variance in the difference scores. However, sphericity can be met without ad-
ditivity, as shown above (that is to say, additivity is sufficient but not necessary for

sphericity).

Another condition that is sufficient (but not necessary) for sphericity is compound
symmetry. This requires homogeneity of the population treatment variances:

o2 =02, ..

and homogeneity of the population covariances.
Pr,a20 MO a2 = Pa1,A30 MO Az = Pa2,A30 a20 a3 = -

where pai a2 is the population correlation between the A1l and A2 scores, and
Para20a10a2 1S their covariance (see handouts at pobox.com/~rudolf/psychol ogy).
The variance sum law tells us that the variance of a difference between two variables
is

2 2 2
Ox_y =0% + 0y —2Pxy0x 0y

and o if the two conditions above are met, the variances of the difference scores
will al be the same. Howell (1997, p. 455) explains why the term ‘compound sym-
metry’ is applied to this situation, using a matrix that illustrates variances and co-
variances between A,, A,, and A; (thisisillustrated under covariance matrix in the
Glossary on p. 214). However, the explanation is not as clear as Myers & Well’s.
Yet data set A shown above exhibits sphericity without compound symmetry (that
is, although the variances of difference scores are identical, i.e. sphericity is true, the
variances of the individual scores are not the same and nor are the covariances for
pairs of treatments).

Myers & Well (1995, p. 246) don't like Mauchly’ s test because it tends to give ‘sig-
nificant’ results (suggesting a problem) even in situations when sphericity holds —
that is, using Mauchly’ stest is a conservative approach.

The three things you can do about violations of sphericity are (1) the usual F test
with adjusted degrees of freedom, as suggested above (after Box, 1954); (2) multi-
variate ANOVA (MANOVA) (see p. 92); (3) tests of planned contrasts (see p. 75).
See Myers & Well (1995, pp. 246-252).
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2.9 Missing data in designs involving within-subjects factors
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If some data are lost for a particular subject, you have a problem. Y ou can either as-
sume the ‘additive’ model discussed above — that the effect of within-subjects fac-
tors are the same for al subjects — and estimate the missing value (Myers & Well,
1995, p. 256-8). Every time you estimate a value, you reduce the df for the relevant
error term by 1. If you don’t assume the additive model, you can’t estimate the
value, and you may then have to throw out all data for that subject. SPSS does
the latter by default.

2.10 Mixed ANOVA (with both between-subjects and within-subject factors)

We will illustrate the simplest mixed design here: one between-subjects factor and
one within-subjects factor. General principles of more complicated within-subjects
models are given by Keppel (1991, pp. 491-496), and laid out in Part 7.

Suppose we take three groups of rats, n = 8 subjects per group (s = 24 subjects total).
We give one group treatment A;, one group treatment A,, and one group treatment
Az (a = 3). One subject only experiences one treatment. Note that s = an. Then we
measure every subject’s performance at six time points U;...Ug (u = 6). We have N
=su=anu=38x 3x6 =144 observationsin total.

We first partition the total variation into between-subjects variability and within-
subjects variability.

The between-subjects variability can be attributed to either the effect of the treat-
ment group (A), or differences between subjects in the same group (‘S within A’ or
‘S/A’). (This notation indicates that there is a different group of subjects at each
level of the between-subjects factor, A; we could not measure simply ‘subject varia-
tion independent of the effects of A’ since no subjects ever serve in more than one
group, or level of A.) So we have these sources of between-subjects variability:

A
S/A

The within-subjects variability can be attributed to either the effects of the time
point (U), or an interaction between the time point and the drug group (U x A), or an
interaction between the time point and the subject-to-subject variability, which again
we can only measure within a drug group (U x S/A). So we have these sources of
within-subject variability:

U
UxA
U x S/A

2.10.1 Structural model

Following Myers & Well (1995, p. 295-6):
Xij =1+ + 70555 + B + 0Py + 7B ki + Eijk

where

e Xkisthe dependent variable for subject j in group A; and condition Uy

e uistheoveral mean

* o isthe contribution from a particular level (level i) of factor A: o = up — 1t .

By this definition, > ¢; =0.

e ;i isthe contribution from a particular person or subject (subject j), who only
serves within condition A; (*subject within group’, or S/A): 7z = Hs jn —H -
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(Thereis no straightforward interaction of A with S: every subject is only
measured at one level of A, so this term would be indistinguishable from
the subject-only effect z;;.)

e [ is the contribution from a particular level (level k) of factor U:
By = 1y, —u . By this definition, ¥ §; =0.

e ofik is the contribution from the interaction of A, and Uy
aﬂik Z#Aﬁuk —(,u-i—ot, +ﬂk) . By thIS defInItIOI’], Zaﬂik = %aﬂik = O

]

* B is the contribution from the interaction of U, with subject j, which can
only be measured within one level of A (it's the ‘SU/A’ term):
ﬂ-ﬂjk/i ZﬂSjUkIAY —(/l"rﬂ'j/i +IB|() . BythISdefInItIOI’l, %ﬂ.ﬁjk/i = O

(There is no straightforward three-way A x U x S interaction: every sub-
ject is only measured at one level of A, so this term would be indistin-
guishable from the SUZA effect nfjwi.)

e gk iseverything else (the experimental error associated with measuring person j
— who always experiences treatment A; — in condition U,):

&k = X —(u+o5 + 7y + Py + By +7Bji) -
Note that we cannot actually measure & independent of the SUZA term

if we only have one measurement per subject per level of U; this term
simply contributes to the within-subjects error term (see below).

2.10.2 Degrees of freedom

We can partition the df like this:

f ot = Hfpetween subjects + Afwithin subjects
Af pesween subjects = dfa +dfga

dfwithin subjects = de + de><A + dexS/A

So now we can calculate al our df. (Often, dfpeween subjects AN SSpetween subjects A€ SiM-
ply written dfs and SSs.)

Ui = N -1
df, =a-1
dfy =u-1

df yn = dif, X dif,
Of perween subjects = S—1
dfga = A pereen supjects — dfa
df yugia = A ithin subjects — (Afa + dfyea)

= (dfiota — Hfpetween subjects) — (Afa + dfysa)

2.10.3 Sums of squares

The partitioning is always exactly the same as for the df:

SSiota = SSpetween subjects T SSithin subjects
SShetween subjects = SSy +SSga
SSuithin subjects = SSy +SSyxa + SSuxga

SSiota = SSa + SSy/a + SSy + SSuxa + SSuxs/a

We have two different ‘error’ terms, one for the between-subjects factor and one for
the within-subjects factor (and its interaction with the between-subjects factor), so
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we can't just label them ‘SSy, . But we could rewrite the tota like this if we

wanted:

SSiota = SSa + SSarror-between + SSu + SSyxa + SSeror-within

Now we can calculate the SS. Remember, each SS must be made up of N compo-
nents, because there are N observations. Take the example of SS,: we calculate this
by summing over a means (namely X ,Xa, ,...)‘(Aa ). But each mean is based on (or,

if you prefer, contributesto) N/a = su/a = anu/a = nu individual scores; we there-

fore multiply our deviations by nu to get the total SSa.

SSipa = (X~ %)
SSheweensubjects = LU(Xs — %)
SS, =X nu(X, - X)°
SSga = SSpetween subjects SS,
SSy =Xs(Xy - x)?
SSya = ZN(Xya — X)°
SSyxsia = SSyithin subjects — (SSu + SSyxa)
= (SSiota — SSpetweensubjects) ~ (SSu +SSya)

Just to make it clear how many scores each mean is based on:

SUb]eCt U1 Uz U3 U4 U5 Us u=6
A S datum | datum | datum datum datum datum X, meansare
S, datum  : datum : datum datum datum datum based on nu =
S datum ! datum ' datum datum datum datum 48 scores
S, datum | datum | datum datum datum datum
S datum i datum : datum datum datum datum
S datum |} datum | datum datum datum datum
S datum  : datum . datum datum datum datum
S datum ! datum ' datum datum datum datum
A, S datum i datum : datum datum datum datum
Sio datum 1 datum 1 datum datum datum datum
Su datum ' datum : datum datum datum datum X Means are
S datum ; datum | datum datum datum datum basedonu=6
Sis datum  : datum  : datum datum datum datum scores
S datum ' datum ' datum datum datum datum
Sis datum | datum | datum datum datum datum
Sis datum i datum : datum datum datum datum
As Sir datum © datum : datum datum datum datum Xy Meansare
Sis datum | datum | datum datum datum datum basedonn=8
Sio datum 1 datum 1 datum datum datum datum scores
S datum i datum : datum datum datum datum
S datum ! datum ! datum datum datum datum
Sy datum datum datum datum datum datum
S datum ' datum ' datum datum datum datum
S datum | datum___ | datum datum datum datum
X, Means are based
a=3 s=24 on an = s= 24 scores N=su=anu=
au=24 144
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2.10.4 ANOVA table

Source d.f. SS F

Between subjects (S): s-1=an-1
A a1 SSA M SA/M SS/A
error S/A (an-1)—(a-1) = a(n-1) SSg/a

Within subjects: (N-1)—(s-1) = an(u-1)
U w1 SSy MSy/M S/
UxA (-1)(a-1) SSyxa MSy.a /MSy,s/a
error U x S/A a(u-1)(n-1) SSuxs/a

Total N-1=aun-1 SSota

where a is the number of levels of factor A, etc., N is the total humber of observa-
tions (= aun), n isthe number of subjects per group (per level of A), and sisthe total
number of subjects.

2.11 Fixed and random factors

When we consider ANOV A factors we must distinguish fixed factors, which contain
al the levels we are interested in (e.g. sex: mae v. female) and random factors,
where we have sampled some of the possible levels at random (e.g. subjects). Ran-
dom factors can be thought of as those whose levels might change; if we repeated
the experiment, we might pick different subjects.

Sometimes the fixed/random distinction is pretty much inherent in the factor —
Subjects is usually a random factor, for example. But sometimes whether a factor is
fixed or random really does depend on the study. Howell (1997, p. 330) uses the ex-
ample of painkillers. If we are asked to study the relative efficacy of the UK’s four
most popular over-the-counter painkillers, we have no choice in which painkillers
we study. If we were asked to repeat the study, we would use the same four painkill-
ers. Painkillers would be a fixed factor. If, on the other hand, we were asked to com-
pare several painkillersto seeif ‘one brand is as good as the next’, we might select a
few painkillers randomly from the dozens on offer. In this case, where our sample is
intended to be representative of painkillersin general but where it is an arbitrary and
non-exclusive sample, we would consider Painkiller to be a random factor. Further
examples are given by Keppel (1991, p. 485 and Appendix C), and by Myers &
Well (1995, pp. 270-1).

When we test effectsinvolving a random factor, we often have to test effects against
an interaction term. Examples are given in the consideration of within-subjects de-
signs (which involve random factors, since Subjects is a random factor). The deter-
mination of appropriate error terms is discussed later in the section on expected
mean squares (EMS) (p. 73), which are different for fixed and random factors.
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Part 3: practical analysis

3.1 Reminder: assumptions of ANOVA

1. Homogeneity of variance
We assume that each of our groups (conditions) has the same variance.

e How to check? In SPSS, Levene's test (Levene, 1960) checks this assump-
tion. To obtain it, choose Options — Homogeneity tests from the ANOVA
dialogue box. If Levene'stest produces a ‘significant’ result, the assumption
is violated — there is heterogeneity of variance. This is a Potentially Bad
Thing. Consider transformation of the data (see below, p. 34). You can aso
plot the standard deviation (and variances) versus the means of each level of
afactor by choosing Options — Spread vs. level plot.

e Unequal ns exaggerate the consequences of heterogeneity of variance — a
Bad Thing (p. 33) (see dso Myers & Well, 1995, p. 105-106).

2. Normality

We assume that the scores for each condition are normally distributed around the
mean for that condition. (This assumption is the same as saying that error is nor-
mally distributed within each condition.)

e How to check? You can inspect the data to get an idea whether the data are
normally distributed in each condition. In SPSS, choose Analyze — De-
scriptive Statistics — Explore. This gives you get stem-and-left plots, box-
plots, and so on. In the dialogue box, tick ‘Both’ to get statistics and plots;
click Plots — Normality plots with tests. This produces a Q-Q plot — a
plot of each score against its expected z value (the value it would have if the
distribution were norma — calculated as the deviation of the score from the
mean, divided by the standard deviation of the scores). If this produces a
straight line, the data are normally distributed. You also get the Kol-
mogor ov—Smirnov test with Lilliefors correction (Lilliefors, 1967) ap-
plied to a normal distribution, and the Shapiro-Wilk test (Shapiro & Wilk,
1965) — if these are significant, your data are not normally distributed — a
Bad Thing. Consider transformation of the data (see below, p. 34).

3. Independence of observations

We also assume that the observations are independent — technically, that the error
components () are independent. For any two observations within an experimental
treatment, we assume that knowing how one of these observations stands relative to
the treatment (or population) mean tells us nothing about the other observation.
Random assignment of subjects to groups is an important way of achieving this. We
must account for any non-independence of observations — for example, observa-
tions that are correlated because they come from the same subjects — by adding
factors (e.g. Subject) that account for the non-independence. Introducing factors to
account for non-independence of observations makes the error terms independent
again, and we're OK. However, these designs — known as within-subject or re-
peated measures designs — have their own assumptions, listed below.

o A statistics package can’'t check this assumption for you! It depends on your
experiment.



3.2 Reminder: assumption of ANOVA with within-subject factors
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Sohericity

Any ANOVA involving within-subjects factors assumes sphericity (discussed ear-
lier). If this assumption is violated, Type | error rates will be inflated (if the null hy-
pothesisis true, you will get too many results that you will declare ‘significant’ than
you should). A simple plan of action:

e Look at Mauchly's test of sphericity. A significant Mauchly’s test means
that the assumption is likely to have been violated.

e When the assumption has been violated for a particular within-subjects fac-
tor, correct the df for any term involving the within-subjects factor, and the
corresponding error df, by multiplying them both by epsilon (¢).

e Use either the Greenhouse-Geisser or the Huynh—Feldt epsilon. The Green-
house-Geisser one (sometimes written £ ) is probably a bit too conservative;
the Huynh—Feldt one (sometimes written £ ) is better (Myers & Well, 1995,
p. 248; Howell, 1997, p. 465).

SPSS reports Mauchly’s test and both the G-G and H-F corrections whenever you
run awithin-subjects ANOV A using its menus.

You never need to correct any terms that have only between-subjects factors. And

you can never violate the sphericity assumption for a within-subjects factor that has
only 2 levels.

3.3 Consequences of violating the assumptions of ANOVA

e Independence of observations. If there are correlations between scores that are
not taken account of by the ANOVA model, Type | error rates can be inflated
(Myers & Well, 1995, p. 69, 101).

e Normality. The Type | error rate is not affected much by sampling from non-
normal populations unless the samples are quite small and the departure from
normality extremely marked (Myers & Well, 1995, pp. 69, 101). Thisis the ef-
fect of the central limit theorem: the distribution of means and their differences
will tend to be normal as n increases, even when the distribution of the parent
population is not. Things are pretty OK even when the dependent variable is
discretely (rather than continuously) distributed (Myers & Well, 1995, p. 101).
However, there are nonparametric alternatives to ANOVA which may some-
times be better when the normality assumption is violated — such as the
Kruska-Wallis H test (Myers & Well, 1995, p. 102-105). For repeated-

measures designs, there are others: Friedman's chi-square ( ,yé ), the rank-

transformation F test (F;), the Wilcoxon signed-rank test, and Cochran’s Q test
(Myers & Well, 1995, pp. 271-280).

e Homogeneity of variance. If the two sample sizes are equal, there is little dis-
tortion to Type | error rates unless n is very small and the ratio of the variances
is quite large. There's generally not a problem if the ratio of the largest to the
smallest variance is no more than 4:1, and sometimes even bigger discrepancies
can be tolerated. However, when ns are unegual, there’s more of a problem.
Whether the Type | error rate goes up or down depends on relationship between
the sample size and the population variance: if the larger group has the larger
variance, the test is conservative, but if the smaller group has the larger vari-
ance, the test is liberal — too many Type | errors — and sometimes the Type |
error rate gets really high (Myers & Well, 1995, pp. 69-71, 105-110). The two
strategies are to use an alternative test or to transform the data to improve the
homogeneity of variance (see p. 34). The alternative tests include the Welch and
Brown-Forsythe modified F tests (Myers & Well, 1995, pp. 106-109; Howell,
1997, pp. 321-323).



e Sphericity. Violations are a problem. We've discussed the solutions elsewhere
(p. 25).

3.4 Exploratory data analysis, transformations, and residuals
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3.4.1. Plot your data

It's avery good ideato plot your data before analysing it. Although there are formal
tests for things like homogeneity of variance, and the other assumptions of an
ANOVA, the tests won’t describe the distribution of your data or show you if there
are outliers. See also Howell (1997, chapter 2).

In SPSS, you can choose Analyze — Descriptive Statistics — Descriptives to get
simple descriptive statistics, or Analyze — Descriptive Statistics — Explore for a
very comprehensive set of options, including descriptive statistics, histograms, stem-
and-leaf plots, Q-Q plots (see p. 9; are the data normally distributed?), boxplots
(also known as box-and-whisker plots, showing outliers), and so on — with your
data broken down by a factor. For example, to analyse ‘Post’ scores broken down by
levels of the factor ‘A’, | might do this:
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3.4.2. Outliers

Outliers can cause substantial problems with parametric statistical tests (e.g. Myers
& Well, 1995, p. 15). If you find one, check that the datum has been entered cor-
rectly — if not, re-enter it, or if you can't, throw it out. If it was entered correctly,
you may consider removing the outlier. There is a danger here — we can't simply
throw away data we don't like (see Myers & Well, 1995, p. 419), and maybe thisis
avalid measurement, in which case we shouldn’t be chucking it out. But sometimes
it represents something we're not interested in. If a reason for the outlier can be es-
tablished (data mis-entered, equipment broken, subject fell adeep, etc.) then it may
be corrected or removed as appropriate. We can always use nonparametric tests,
which are much less sensitive to outliers. How do we define an outlier? With a box-
plot, one convention is to regard points more than 3 box widths (3 x interquartile
range) from the box as outliers. Another isto consider points outside the whiskers as
outliers (Tukey’s original suggestion), but this throws away many — too many —
data points. Finally, another approach isto define outliers as points >2 standard de-
viations from the group mean.



Another technique related to outlier removal is the use of trimmed samples. Rather
than transforming your data to achieve homogeneity of variance (see below), an-
other approach to ‘heavy-tailed’ samples (fairly flat distributions with alot of obser-
vations in the tail — posh name platykurtic) isto trim the sample. For example, with
40 cases per sample, a 5% trimmed sample is the sample with the top two and the
bottom two observations removed (5% removed from each tail). When comparing
several groups, asin ANOVA, each sample would be trimmed by the same percent-
age. However, there is a special technique required for the ANOVA: the MSyor
should be based on the variance of the corresponding ‘Winsorized” sample — onein
which the values you removed are replaced by copies of the next-most-extreme da-
tum (Howell, 1997, p. 329). To my knowledge, thisisn’t a very common technique.

3.4.3. Transformations

Transformations can be used (1) to transform skewed distributions into something
closer to a normal distribution; (2) to reduce heterogeneity of variance; (3) to rem-
edy ‘non-additivity’ in within-subject designs. A transformation that achieves one
purpose well may not be equally suited to other purposes, although transformations
that equate variances do tend to give more normally distributed scores (Myers &
Well, 1995, p. 109). We'll focus on transformations designed to achieve homogene-
ous variances. Such transformations can be derived if the relationship between ;

(the group mean) and 0'12 (the group variance) is known. Here are some examples,
and a general rule (Myers & Well, 1995, pp. 109-110; Howell, 1997, pp. 323-329):

e |f thedataare proportions, such as ‘percent correct’, the scores in the popula-
tion are binomially distributed; the variance can be written as 0'12 =ku; (1— )
where k is a constant. The appropriate transformation is the ar csine transforma-
tion: Y’ =arcsinyY . For example, if adatum (Y value) is 0.5, the transformed
value Y’ is arcsiny/0.5 = 45" ; you would use the value 45 for analysis. (Or you
could do it in radians; it doesn't matter: z radians = 180°.) Y our data should be
in the range 0-1; if your data are percentages (97%), analyse them as propor-
tions (0.97). The arcsine transformation stretches out both tails (numbers near to
0 and 1) relative to the middle (numbers near to 0.5).

e |n general... Plot Iog(c}j), the log of the standard deviation of each group,

against Iog(\7j) , the log of the mean of each group. If this relation is approxi-

mately a straight line, find its slope. The appropriate transformation would be
Y =Y&8%9 | 1 _dlope = 0, take the log of each score instead of raising it to
a power.

o |f thedata are markedly skewed, or the standard deviation is proportional
to the mean, you will often find that the slope is 1 and a log transformation is
appropriate. Reaction times may be amenable to this transformation. It is also
applicable when the scores themselves are standard deviations. Y ou can use any
base for the logarithm (10 is simple, but you could use e or anything else). You
can't find logarithms of zero or of negative numbers, so if your data are nega-
tive it is permissible to add a constant before taking the log: Y’ =log(Y +k) . If

you have near-zero values, use Y’ =log(Y +1) rather than Y’ =log(Y) .

e Varianceisproportional to the mean. Consider taking the sguare root of each

datum: Y’ =Y =Y°®. The square-root transformation compresses the upper
tail of the distribution. If your scores are small (e.g. <10), you may find that

Y =Y +05 oreven Y =+Y ++/Y +1 works better for equating variances.

e The reciprocal transformation, Y’=$=Y‘l, is aso useful if the data are

positively skewed (afew very large values at the upper end of the distribution).
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Indeed, it may often make alot of sense to use it — particularly in the example
of transforming reaction times or latencies to reaction speeds.

Don't apply a transformation unless you need to, or it makes theoretical sense. A
major problem with transformations is interpreting subsequent analyses. Sometimes
transformations make excellent sense, such as in the time-to-speed transformation.
Or you might have a theoretical reason to think that Y is a power function of some
variable X: Y = ax®. Then analysing log(Y) and log(X) would make sense, because
their relationship would then be linear and ANOV A techniques are built around lin-
ear relationships. And if there is a clear relationship between group means and stan-
dard deviations, the appropriate transformation will tend to give a more powerful
statistical test. But sometimes transformations that improve heterogeneity of vari-
ance don't help you theoretically — you may discover that group 1 makes more

\/ lever presses+ 0.5 than group 2, and then have to interpret that in terms of the rea

world of lever presses. And if relative distances between means are of interest,
problems can crop up: Myers & Well (1995, p. 110) give the example of comparing
two teaching methods for high- and low-ability subjects. Even if the difference be-
tween the two teaching methods were the same for the high- and low-ability groups
on the origina data scale, the transformation might well produce a different result on
the new scale; conversely one method might have more of an advantage for low-
ability subjects on the original data scale, but again the results might be quite differ-
ent on the transformed scale.

If you transform your data, it is only fair that you plot the transformed data in your
figures, since that’s what you analysed (especialy if your figures show indices of
variability, such as error bars, and/or make some claims as to significant differences
between conditions). You may also choose to report the group means converted
back to ‘real’ units. But be aware that this can be a little misleading. For example, if
a group of six rats makes (16, 28, 38, 96, 55, 5) lever presses (mean = 39.67) and
you analyse the square-root transformed data (4, 5.29, 6.16, 9.80, 7.42, 2.24), you
will find that the mean of the transformed data is 5.82. But 5.82 is the square root of
33.87 — so converting the mean of the transformed data back to the original scale
(by applying the reverse of the transformation) doesn’t give you the untransformed
mean.

If you do need to transform, it is perfectly permissible to ‘shop around’, trying out
severa transformations until you find one that does a good job of reducing hetero-
geneity of variance (Howell, 1997, p. 329). But it is not permissible to shop around
until you find a transformation that gives you a significant result! You are trying to
optimize the data so that the ANOVA is valid — you are not trying to ‘optimize’ the
ANOVA result.

3.4.4. Plot your residuals

You should always plot the distribution of the residuals from any analysis —
y—¥, or what's left over after you've predicted your dependent variable. Are the

residuals normally distributed? If not, you should do something. Remember that an
assumption of ANOV A was that the error variance was normally distributed (p. 9).
If your residuals are not normally distributed, your p values don't mean what you
hope. You can

e transform your dependent variable (p. 35)
e add another predictor (p. 51)

Why might non-normal residuals suggest that adding another predictor would be a
good idea? Well, normal (Gaussian) residuals are what you'd expect if ‘error’ wasin
fact made up of a load of independent things of roughly equal importance (e.g.
measurement error, room temperature fluctuations, background noise variations,
time of day variations, subject alertness...); remember that the central limit theorem
tells us that the distribution of a sum of a set of identically distributed random vari-
ables approaches the normal distribution. For a given standard deviation, the normal
distribution has the maximum uncertainty (in information-theoretic terms, conveys
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the maximum information). So normally distributed residuals help to suggest that
there’ s no other major non-normally-distributed predictor you should add in.

In SPSS, you can choose Options — Residual plot for any ANOVA:

L [X]

Univariate: Oplions

Estimated b arginal Means
Eactor(s] and Factor Interactions: Display Means for.

[OVERALL]
al

Display
[~ Descriptive statistics [~ Homogeneity tests
[T Estimates of effect size

[~ Observed power

[T Parameter estimates [ Lack of fit

[~ Contrast coefficient matriz [~ General estimable function

Significance level: |.05 Confidence intervals are 95%

Continug Cancel | Help

The three types of plot you get are:
e observed Y values (y) against predicted Y values () — there'll be a corre-

lation if your model is any good;
e observed Y values (y) against residuals (y—y) — ther€ Il be a correlation,

since the two aren’t independent (since y = ¥+ residual );
e predicted Y values ( y ) against residuals (y — y ) — the two should be inde-
pendent.

These plots are not terribly helpful. SPSS uses standardized residuals in these
plots. (A standardized residual is a residual divided by an estimate of its standard
deviation.) In SPSS's output there are two copies of each plot — one arranged with
one variable on the x axis and the other on the y axis, and the other flipped (mirrored
around the x = y line). Here I've faked some data where Y depends on two other
variables X; and X, (both continuous, for this example, i.e. covariates, but they could
equally be factors), which happen themselves to correlate. This is what SPSS's re-
sidual plotslook like:
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Oncervea @,,/ . #,.0| @ predictor variable (model: Y = constant +
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o2 77 |0 Tael look at is the ‘standardized residual’ versus
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e o8 e like a scatterplot. Whatever part of Y is not pre-

ol L dicted (the residual) now appears to be uncor-

TR L related with the predicted part, which is good —
2 g T T [ e our model is doing a better job.
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Model: Intercept + X1 + X2
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However, thisresidual analysisis not ideal — it doesn’t give us a very clear indica-
tion of whether the residuals are normally distributed. What you can also do is to
save the residuals from any ANOVA. Choose the Save dialogue box and choose
the appropriate option, such as the unstandardized (raw) residuals:

Univariate: Save

Fredicted Yalues Residuals
Hing ced ¥ Unstandardized

r
I™ Standard eror I Standardized
Diagnostics ™ Studentized
[ Cook's distance [ Deleted

[T Leverage values

Save o Hew File

™ Coefficient statistics

Cantinue Cancel | Help |

When the ANOVA is run, new column(s) are created with the residuals in. (If you
run an ANOV A with within-subjects factors in the usual way using Analyze — Gen-
eral Linear Model — Repeated Measures, with one subject per row, you get one re-
sidual column for every data column in your input. This dialogue box can aso be
used to save the predicted values. In syntax, you can specify /SavE = PRED RESID
to get both.) Once you' ve obtained your residuals, you can check them for normal-
ity: Analyze — Descriptive Statistics — Explore; tick ‘Both’ to get statistics and
plots; click Plots — Normality plots with tests. This produces a Q-Q plot (if this
produces a straight line, the data are normally distributed) and the Kolmogorov—
Smirnov and Shapiro-Wilk tests (if significant, your residuals are non-normal); see
p. 32 for explanation of these. To examine the residual distribution for several
groups separately, enter the grouping factor into the Factor List:

 Explore : x|
@ - gL Explore: Plots = ﬁ
Residual for DEFYAR Boxplot: o] i
@b ) Eacte anplots eschiptive
@ el _I % Factar levels together | W Stem-and-leaf G ‘
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® Cocal | | | tore [ ]
o ET
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@ subject Spread ve. Level with Levene Test
® deprar Label Cases by & More
I:I " Power estimation
Display ™ Transtarmed
- - e . P " Untransformed
Both  Statistics Plots Statistics, Plats. Dptians,

As an example, | created some data in which the data were created from the sum of
contributions from factor A (two levels), factor B (two levels), and random noise. If
we analyse with an ANOVA that only has factor A init, saving and plotting the re-
siduals as described above, we get a Q—Q plot of the residuals that looks like the
left-hand side of the figure below — clearly not normal. This might suggest to us
that we need to include another predictor. If we now include factor B in the ANOVA
and replot the new residuals, we get the right-hand version, in which the residuals
are normally distributed. That meets the assumptions of the ANOVA, and we can
feel abit happier that we haven't ‘left anything out’ of the analysis.



Normal Q-Q Plot of Residual for DEPVAR

3: Practical analysis

Normal Q-Q Plot of Residual for DEPVAR

Expected Normal
ta

Expected Normal
ta

Observed Value Observed Yalug

39

Dependent variable was caused by factors A and B, but | Factors A and B are both entered into the analysis. Re-
only factor A was entered into the analysis. Residuals are | siduals are normally distributed.

not normally distributed.

Finally, residuals that are outliers (large) for a group reflect data points that are
outliers, so residual plots are another way to spot outliers (see also Myers & Well,
1995, p. 414).

3.5 Further analysis: main effects, interactions, post hoc tests, simple effects

Plot your data. With any reasonably complex experiment, you can't interpret the
data until you've plotted it...

3.5.1. Simple effects

A reminder of what main effects, interactions, and simple effects refer to (see p. 20).
It's easiest to visualize with a two-factor ANOVA. A main effect of A means that
the A means (A, A, ...A,) arenot all equal. Similarly for amain effect of B. Anin-
teraction means that the effects of A are not the same at al levels of B (equiva-
lently, that the effects of B are not the same at all levels of A).

Main effect of A Main effect of B AxB interaction (no AxB interaction (and
main effect of either, main effects of A and
as it happens) B)
2 2 = =
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Suppose we have a between-subjects factor A (group: A, = control, A, = drugged)
and a within-subjects factor U (task condition: U; = hot room, U, = cold room). We
analyse our data and find an interaction. We may want to ask questions about simple
effects: was there an effect of drug on performance in a hot room (simple effect of A
a U,, aso written A/U,)? Was there an effect of drug on performance in a cold
room (A/U,)? Was there an effect of room temperature on the control group (simple
effect of U at A1, written UZA;)? On the drugged group (UZA,)?

There are two ways of running simple effects analysis. The first and simplest is only
to analyse the data that’s relevant. So to ask about A/U,, we'd only analyse the
U, (cold room) data, this time with a one-factor ANOV A — we' ve dropped out the
U factor. Similarly, if we had started with a three-way ANOVA (A x B x C), we
would have run a two-way ANOVA to establish effects such as A /C,, B/C,, and



AxB/C; (the last one is sometimes called a ‘simple interaction’). This is easy and
generally recommended (Myers & Well, 1995, p. 304). It can be applied to between-
and within-subjects factors.

It is possible to obtain a more powerful test of the simple effects. This involves cal-
culating the MS for the ssimple effect just as before, but testing it not against the
MSaror fOr the sub-analysis (the one-factor ANOVA in our A x U example), but
against the MS,,o for the original, full ANOVA — known as the pooled error
term. If you want to do this, you have to do it by hand: Ftactor/dt-pooled-arror = M Stec-
tor/ M Spooled error- Similarly, you can use the pooled error term for multiple compari-
sons between treatment means, if your factors have >2 levels. However, you
shouldn’t do this for within-subjects simple effects, as corrections for violations of
the sphericity assumption are inadequate (Howell, 1997, p. 468). Furthermore, if
there is some heterogeneity of variance, there can also be substantia problems
(Myers & Well, 1995, pp. 134-136, 304-305). So it's simplest and probably best to
ignore this technique — just run asimpler ANOV A on a subset of your data.

3.5.2. Determining the effects of a factor with >2 levels

If you discover that you have a significant main effect of a factor A with 2 levels,
you know what it means: 5 # i, - S0 you only have to look at the means to work

outif up >pup or pp <pp - Butif you have five levels, a significant main effect
merely means that the null hypothesis

Ho t =ty = i3 = 1y = Us
has been rgjected. But what does that mean? There are all sorts of aternatives:

M=y =3 = Uy # Us
= =3 # [y = s
M=y =tz # Ha # Us

This is where we would use post hoc comparisons among treatment means. There
are two types of post hoc tests. One kind tests all possible pairwise comparisons.
For 5 levels, we can compare 1 and i, 14 and gs... up to g, and ps. For 5 compari-

sons, there are SC =10 possible pairwise comparisons. The other type of test groups

the means into homogeneous subsets, and tells you something like ‘14, 1, and iy
fal into one subset [are all the same]... 1, and us fall into another subset [are the
same]... the subsets differ from each other’.

But we must be careful.
3.5.3. Post-hoc tests: the problem

The upshot: if you collect your data, look at it, and wonder ‘are those two points
significantly different?, you need to use a post hoc test — because your eye has al-
ready selected particular points to compare, which influences the likelihood of find-
ing a‘significant difference’...

It's beautifully put by www.statsoft.nl/textbook/stglm.html: “Sometimes we find
effects in an experiment that were not expected. Even though in most cases a crea-
tive experimenter will be able to explain almost any pattern of means, it would not
be appropriate to analyse and evaluate that pattern as if one had predicted it all
along. The problem here is one of capitalizing on chance when performing multiple
tests post hoc, that is, without a priori hypotheses. To illustrate this point, let us con-
sider the following ‘experiment’. Imagine we were to write down a number between
1 and 10 on 100 pieces of paper. We then put all of those pieces into a hat and draw
20 samples (of pieces of paper) of 5 observations each, and compute the means
(from the numbers written on the pieces of paper) for each group. How likely do you
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think it is that we will find two sample means that are significantly different from
each other? It is very likely! Selecting the extreme means obtained from 20 samples
is very different from taking only 2 samples from the hat in the first place, which is
what the test viathe contrast analysis [known as an a priori test or planned contrast]
implies. Without going into further detail, there are several so-called post hoc tests
that are explicitly based on the first scenario (taking the extremes from 20 samples),
that is, they are based on the assumption that we have chosen for our comparison the
most extreme (different) means out of k total means in the design. Those tests apply
‘corrections’ that are designed to offset the advantage of post hoc selection of the
most extreme comparisons. Whenever one finds unexpected results in an experiment
one should use those post hoc proceduresto test their statistical significance.”

In general, we can define the per-test Type | error rate (e, aso called the error rate
per contrast) and the familywise Type | error rate (ory), the probability of making at
least one Type | error rate when performing a ‘family’ of multiple comparisons.

3.5.4. The special case of three groups. multiplet tests are OK

There's a specia case in which multiple uncorrected t tests are OK — when you
have three groups (Howell, 1997, p. 370) and you have a significant main effect for
your factor. Thisisn’t widely appreciated. The ANOVA F test assesses the null hy-
pothesis:

Hotth ==t

If we have a significant main effect, then we' ve already rejected this null hypothesis.
That means that one of the following must be true:

My # Uy = s
M= Hy # U3
M # ) # U3

If we run a complete set of (3) uncorrected t tests, we will choose one of these three
conclusions. But no conclusion involves us judging that there are more than two
inequalities (significant differences between individual means). And we know that
there is at least one inequality, since we' ve rejected the overall null hypothesis. So
we can make at most one Type | error. Therefore, the probability of making that
Type | error (choosing g # i, # t3 When one of the other two is correct) is the

plain o for each test, and no further correction is necessary.
3.5.5. Otherwise... a variety of post hoc tests
For between-subjects factors, SPSS provides too many optionsin its Post Hoc box:

Equal variances assumed

e "LSD (Fisher'sleast significant difference). Uncorrected multiple t tests, ex-
cept that the test is only performed when an ANOVA has rejected the over-
al null hypothesis, i.e. shown that ‘something’s going on’ (Myers & Well,
1995, p. 188; Howell, 1997, p. 369-370). ary = 1 — (1- a)* when k inde-
pendent tests are performed, and apy < 1 — (1— o) when the tests are not in-
dependent (Myers & Well, 1995, p. 177). Only suitable for <3 levels of a
factor — in which case it's the most powerful test — but don’t use it other-
wise.

e "Bonferroni t procedure. Occasionaly called the Dunn procedure. Makes
use of the Bonferroni inequality: apw < ka, or more generaly, opy <X ¢

I

where ¢; is the probability of a Type | error for the ith contrast (Myers &
Well, 1995, p. 179). Thisis derived from the ‘proper’ version, apy < 1 —(1-
)*, by noting that for small values of « (and 0.05 is small), (1-)* ~ 1 — ka..
Therefore, each contrast istested at o = apy/k. For example, if four tests are
to be performed (k = 4) and we desire ary = 0.05, then each test is per-
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formed at o = 0.0125. Quick to do. Additionally, we don’t have to have all
the as equal. If we're much more interested in one of our four comparisons,
we could allocate & = 0.03 to it, and « = 0.0067 to each of the others (Myers
& Well, 1995, p. 181). Can be used for testing k planned contrasts.

e "Sidak (or Dunn-Sidék, or Sidak). Since apy = 1 — (1~ «)¥, this procedure
solves for o [a = 1 — (1— apw) ™| S0 as to get ary to be what you want (typi-
cally 0.05). Like the Bonferroni correction, but more accurate (i.e. it's cor-
rect). See a'so Howell (1997, p. 364).

e tScheffé. See Myers & Well (1995, p. 183) and Howell (1997, p. 379).
Controls apy againgt al possible linear contrasts (see p. 75), not just pair-
wise contrasts. Consequently, very conservative.

¢ TREGWF (Ryan-Einot—Gabriel-Welsch F test). No idea; somehow
similar to the REGWQ.

e TREGWQ (Ryan—-Einot—Gabriel-Welsch) range test. A compromise
between the Newman—-Keuls (liberal) and Tukey HSD (conservative)
(Howell, 1997, p. 378). This test does not require the overall F for groups to
be significant as it controls the familywise error rate independently and test
different hypotheses from the overall ANOVA, with different power
(Howell, 1997, p. 351). Recommended (Howell, 1997, p. 378) except for
unequal cell sizes (SPSS help).

e TSNK (Student—Newman—Keuls, a.k.a. Newman—Keuls). Not often used.
Poor control of apy (Myers & Well, 1995, p. 188; Howell, 1997, p. 372-
377) unless there are only three means to be compared, in which case it's
OK.

e “tTukey HSD (honestly significant difference). Similar to the Newman—
Keuls test except that it fixes ary properly (Howell, 1997, p. 377).

e TTukey's-b. Tukey’ stest asarange test? Not sure.

e tDuncan’s multiple rangetest. Not often used. Poor control of ary (Myers
& Well, 1995, p. 188).

e “tHochberg s GT2. Less powerful variant of Tukey's; see SPSS help.

e 'tGabriel’s pairwise comparisons test. ‘A more powerful version of
Hochberg's GT2 when cell sizes are unequal; may become liberal when the
cell sizesvary’ (SPSS help).

e tWaller—Duncan t test. ‘Uses a Bayesian approach. Uses the harmonic
mean of the sample size when the sample sizes are unequal’ (SPSS help).
That doesn’t tell you much.

e Dunnett’s test for comparing treatment groups with a control group.
Sometimes we are interested in comparing each of the a—1 treatment groups
to a control group, and less interested in comparing them to each other. For
this case, since no two of the set of contrasts are orthogonal, the Bonferroni
approach would be conservative (see pp. 76, 77). This test does not require
the overall F for groups to be significant as it controls the familywise error
rate independently and test different hypotheses from the overall ANOVA,
with different power (Howell, 1997, p. 351).

Equal variances not assumed

e ‘Tamhane's T2. ‘Conservative pairwise comparisons, based on a t test’
(SPSS help).

e 'Dunnett’s T3. Noidea. Rangetest.

e "Games-Howell. ‘Sometimes|liberal’ (SPSS help).

e 'Dunnett’sC. No idea. Range test.

" Pairwise comparison test.

T Homogeneous subset test.

A range test is one based on a Studentized range statistic g, a modification of the
t statistic (Howell, 1997, p. 370-372).

The important tests are summarized by Myers & Well (1995, p. 186). You can do
most of what you want with the Sidak correction for pairwise comparisons, Dun-
nett’s test when you' re comparing treatment groups to a control group, and perhaps
the REGWQ as a homogeneous subset test.
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Pick your post hoc tests in advance: it is not valid to run all sorts of tests and
then pick the ‘most significant’. | suggest uncorrected t tests (Fisher’s LSD) for
three groups, the Sidak correction for >3 groups, and Dunnett’s test for comparing
treatment groups to a control group if you're more interested in that comparison than
in differences between the treatment groups. If you would like a homogeneous sub-
set test, then the Tukey HSD test is popular but the REGWQ is perhaps better. Tu-
key's HSD, REGWQ, Dunnett’s, and the Sidak test don’'t even require the
overall F test from the ANOVA to be significant (Howell, 1997, pp. 351, 364,
377), although the 3-group Fisher LSD does.

SPSS doesn’t let you perform many of those tests on within-subjects factors, for
good reason — many of them aren’t valid (see Howell, 1997, p. 471). However, you
can choose ‘Display means for...” in the Options box and tick ‘Compare main ef-
fects' with either no correction for multiple comparisons (LSD) — only valid if the
factor has only 3 levels — or a Bonferroni or Sidak correction. The facility to com-
pare means with a Sidak correction and to run further ANOVAs on subsets of your
data is enough to analyse any between/within-subjects design, unless you also want
to run specific contrasts (see p. 75).

3.6 Drawing pictures: error bars for different comparisons
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Much of thisis reproduced from www.pobox.com/~rudolf/psychology, except the
section on ANOVA.

3.6.1. Error barsfor t tests: between-subjects comparisons

In brief:

e The standard error of the mean (SEM) conveys the precision with which the
population mean was estimated. (It depends on the SD and the sample size,
n.) Every mean (e.g. every group) hasits own SEM.

e |tisappropriateto useit asan error bar for between-subjects comparisons.

e |tisthe most common error bar you see published.

e The convention isto plot +1 SEM — that is, your error bars extend above
the mean by 1 SEM and below the mean by 1 SEM.

e Alternatives include the standard deviation (SD), which measures the vari-
ability of observations about their mean and is independent of n, and confi-
dence intervals (Cl); these show the range of values within which the popu-
lation mean probably lies, and depend on the SD and n.

The SEM isfrequently used as an index of variation when people publish data. They
may quote a measurement of ‘25.4 + 1.2 @', or display a datum on a graph with a
value of 25.4 units and error bars that are each 1.2 units long. These ‘variation’ indi-
ces could be one of several things — mean + SD, mean + 95% CI, mean = SEM...
The paper should state somewhere which one is being used, but usualy it's the
SEM. Why? Firgt, it's smaller than the SD, so it conveys an impression of improved
precision (remember that accuracy is how close a measurement isto a ‘true’ value
and precision is how well it is defined; thus, 2.5000000003 x 10® m-s™ is a more
precise but far less accurate measurement of the speed of light than 3.0 x 10° m-s™).
In fact, using the SEM is perfectly fair and correct: the precision of an estimator is
generally measured by the standard error of its sampling distribution (Winer, 1971,
p. 7). Secondly — more importantly — if the SEM error bars of two groups overlap,
it's very unlikely that the two groups are significantly different. (This is explained
somewhat in the figure.) The opposite isn’'t necessarily true, though — just because
two sets of error barsdon’t overlap doesn’t mean they are significantly differ-
ent (they have to ‘not overlap’ by a certain amount, and that depends on the sample
size, and so on).



3.6.2. Error barsfor t tests: within-subjects comparisons

In brief:
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e SEMs are misleading for within-subjects comparisons. Use the standard er-
ror of the difference (SED) for the relevant comparison instead.
SEDs are a so appropriate for between-subjects comparisons.
SEDs are not ‘attached’ to a particular mean, so the convention is to plot a
‘free-floating’ error bar that is 2 SED long, and label it. (The reader can use
it asamental ruler to make comparisons between the relevant means.)

For within-subjects comparisons, SEMs calculated for each condition are highly
misleading (see figure below). For this comparison — indeed, for any comparison
— the SED is an appropriate index of comparison, because that’s what the t test is
based on (t = difference between means / SED). So if the differ ence between two
meansis greater than twice the SED, t > 2. And for ahealthy n, t > 2 is significant
at the two-tailed « = 0.05 level (have a quick glance at your tables of critical values

of t).
SEMs overlap.
Probably not different.
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Error bar =+1 SEM (1 SEM above, 1 SEM below the mean).

If the ns and SEMs of two groups are the same, then ¢ = (difference
between means) divided by (N2 x SEM). And if the SEMs of the two
groups are the same and the SEMs overlap, then the means differ by
<2 x SEM, s0£<2 /N2 =1.4.And 1 < 1.4 is never significant even at
the 0.1 level.

So for independent groups, if the SEM error bars overlap, there’s
probably not a significant difference.
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For within-subject comparisons, the SEM of each condition is not
helpful. The vertical bars show group means; their error bars show 1
SEM. You would think that the groups don’t differ. But in fact, the
same subjects were tested in condition 1 and condition 2. The subjects
all scored very differently, but there is a consistent improvement from
condition 1 to condition 2. If we ran a paired-sample ¢ test on the
difference scores, we would find a highly significant difference
between the two conditions. The appropriate index of variation to
compare the two conditions is the standard error of the difference
between means (SED), shown at the top.

Another way of plotting these data would just be to plot the
difference scores, with their SEM; readers could then visually compare
that mean to zero. However, that would not show the baseline scores.

The SED is always an appropriate index of comparison; a ¢ test is calculated as (difference between means) divided by (appropriate SED). But
different comparisons require different SEDs. If your error bars don’t convey the right impression, consider using SEDs (as in the top-right
example; you could say “the error bar is 2 X the standard error of the difference for the comparison between ...”).

The SED istherefore a very good index of variation that can be used to make visual
comparisons directly, particularly if you draw error bars that are 2SED long — if the
means to be compared are further apart than the length of this bar, there’s a good
chance the difference is significant. However, it's a bit more work to calculate the

SED, which iswhy you don’t seeit very often.



If you want to work out an SED, just choose the appropriate t test and calculate the
denominator of the t test. For between-group comparisons where the group SEMs
are SEM; and SEM,, you' Il see that SED = V(SEM,* + SEM,?).

To summarize, for within-subject changes:

1. The mean within-subject change equals the difference of the group means.

2. The variance of the within-subject change may differ greatly from the variance
of any one condition (group).

3. Present within-subject changes when the baseline varies a lot, or you want to
show variance of the within-subject measure.

4. Present group means when the baseline matters.

3.6.3. Error barsfor an ANOVA

In brief:

e SEDsare aways appropriate.

e UseSED= ‘/M if al groups are the same size.
n

e Use SED= \/M+M if there are two groups being compared and
n M

they are of unequal size.

e This means there may be a different SED for each comparison of two
means. In SPSS, you can obtain these using pairwise comparisons for inter-
action effects (see p. 62). However, most people want to plot a‘single’ SED.
For this purpose, if there are >2 groups of unequal size, | think the most ap-

propriate oneto useis SED = % where ny, is the harmonic mean of
h

the group sizes (see p. 213 and also p. 70). For two groups, that reduces to

the formula above.

e Inan ANOVA with several factors, there may be are several different SEDs,
corresponding to severa different M Sy, terms. Although you can plot the
most relevant one(s), the most common convention is to plot the SED from
the highest interaction shown in your graph (so if your graph shows factors
A and B, you would plot the SED from the A x B interaction).

e The convention is to plot a ‘free-floating’ error bar that is 2 SED long, and
label it as such.

A ttest is directly related to an ANOVA: Fy, =tZ and t, =./F,, . And at test has
this general formula:

B quantity
standard error of that quantity

For example, aone-samplet test has the formula

t= mean — test value
standard error of the mean (SEM)

and atwo-samplet test has the formula

~ standard error of thedifference between means (SED)

For a single sample, the SEM (the standard deviation of all sample means of a given
sample sizen) is
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For two independent samples, the SED (the standard deviation of the set of differ-
ences between pairs of sample means) is

2 2
Os v = 0-_1+2 2 2
X —Xo . . . 2 (o} (o
n m with corresponding variance oy 5, =——+—*=
n

= /SEM2 + SEM2

In an ANOVA with one factor and two groups, since we assume homogeneity of
variance, our best estimate of the variances of two groups 0'12 and c7§ isaweighted
(‘pooled’) average of the two group variances (Myers & Well, 1995, pp. 65-66):

O = = =
pooled T, + df,  of,+df, df+df,  dfgy

. df,6? df,62 +
2 11 + 2V 2 _Ssi SSZ_SSerror:MSerror

S0 MSayor iS an approximation to o2 . In fact, we knew that already (see pp. 9, 10).
In general, the standard error of an estimate (Myers & Well, 1995, pp. 500-1), &,,
which estimates the standard deviation of the error variability ¢, is

N SS “
O = ﬁ:VMSerror , Or O-eZZMSerror
error

and therefore for a comparison between two groups, the SED is given by

o _\/MSEH'OT + Mserror

X=Xy nl n2

For equal group sizes, with n observations per group, this simplifies:

2M
Ox—x, = \f%

SPSS provides SEM and SED estimates for any given comparison when you choose
Options — Estimated Marginal Means for afactor or set of factors, or if you use the
/EMMEANS = TABLES (factor) Syntax (seeillustrated example on p. 56—). But note
that there is no ‘one’ SED appropriate for all comparisons. If you have >2
groups, and their sizes are unequal, the SED for comparing group 1 to group 2 may
be different for that for comparing group 1 to group 3. And in a multi-factor
ANOVA, the SED for comparisons involving factor A will differ from the SED for
comparisons between A x B subgroups. As we saw above, the convention is to plot
the SED from the highest-order interaction.

3.7 Summarizing your methods: a guide for thesis-writing and publication
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The following is an extract from my PhD thesis methods (which proved perfectly
publishable: e.g. Cardinal et al., 2003), with comments in square brackets.

Data... were... analysed with [computer package, e.g. SPSS], using principles based on
Howell (1997) [or other appropriate textbook]. Graphical output was provided by [com-
puter package, e.g. Excel 97 and Sigmaplot 2001]. All graphs show group means and er-
ror bars are 1 SEM unless otherwise stated.

Transfor mations. Skewed data, which violate the distribution requirement of analy-
sis of variance, were subjected to appropriate transformations (Howell, 1997, section
11.9). Count data ([e.g.] lever presses and locomotor activity counts), for which variance
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increases with the mean, were subjected to a square-root transformation. Homogeneity of
variance was verified using Levene' s test.

Analysis of variance. Behavioural data were subjected to analysis of variance
(ANOVA) using a general linear model, using SPSS's Type |11 sum-of-squares method.
Missing values were not estimated but excluded from anaysis [= subjects for whom
some data were missing were omitted entirely; SPSS's default]. All tests of significance
were performed a o = .05; full factorial models were used unless otherwise stated.
ANOVA models are described using a form of Keppel’s (1982) notation; that is, depend-
ent variable = A, x (Bs x S) where A is a between-subjects factor with two levelsand B is
awithin-subjects factor with five levels; S denotes subjects.

For repeated measures analyses, Mauchly’s (1940) test of sphericity of the covariance
matrix was applied and the degrees of freedom corrected to more conservative vaues us-
ing the Huynh—Feldt epsilon £ (Huynh & Feldt, 1970) for any terms involving factorsin
which the sphericity assumption was violated.

[Better approach, now I’ve learned more (see p. 25): Degrees of freedom for terms

involving within-subjects factors were corrected using the Greenhouse-Geisser epsi-

lon & (Greenhouse & Geisser, 1959) where the sphericity assumption was violated
substantialy (£ < 0.75) or the Huynh—Feldt epsilon £ (Huynh & Feldt, 1970) when
the sphericity assumption was violated minimally (£ > 0.75) ]

[Pretty good and simple approach (see p. 25): Degrees of freedom for terms in-

volving within-subjects factors were corrected using the Huynh-Feldt epsilon &

(Huynh & Feldt, 1970).]

Thus, the same analysis with and without sphericity correction would be reported as fol-
lows:
Uncorrected: Fig 160 = 2.047, p = .032

Corrected: F4.83,77.3 =2.047, é =0.483, pP= .084

[Journals used to quibble about non-integer df because they were ignorant; such quib-
bling is less common these days. If you quote non-integer df, though, state the correction
factor so people can work out the original df.]

Post-hoc tests. Significant main effects of interest were investigated using pairwise
comparisons with a Sidak correction. This is based on the observation that asamiiywise = 1 —
(1 — aexcn tes)" When n tests are performed; the correction was made such that agamiipwise =

Where main effects were found for between-subjects factors with three or more levels,
post hoc comparisons were performed with the REGWQ range test (familywise a = 0.05),
or Dunnett’ s test in situations where several experimental treatments were compared with
asingle control group. These tests do not require the overall F for groups to be significant
as they control the familywise error rate independently and test different hypotheses from
the overall ANOVA, with different power (Howell, 1997, p. 351). [| was clearly rambling
a bit herel]

Where significant interactions were found following factorial analysis of variance,
simple effects of a priori interest were calculated by one-way ANOV A and tested by hand
against the pooled error term (F = M Siaor/ M Spooled errors Critical values of F based on
Oftcior AN Afpooied error)- Multiple comparisons for simple effects were performed as de-
scribed above but using the pooled error term.

Where significant interactions were found following repeated measures analysis, a
pooled error term was used to test between-subjects simple effects of a priori interest, but
separate error terms (i.e. plain one-way ANOV A) were used for within-subjects factors as
sphericity corrections are inadequate if a pooled error term isused (Howell, 1997, p. 468).
[These days | wouldn’t use the pooled error term at all, and would just use plain one-way
ANOVA; see Myers & Well (1995, pp. 304-5).]

Add any other special procedures you used! For example, you might add this:

... dependent variables were checked for normality by inspection of Q—Q plots (which
plot scores against their expected values under a normal distribution) and using the Kol-
mogorov—Smirnov test with Lilliefors correction (Lilliefors, 1967) [and/or] Shapiro—
Wilks test (Shapiro & Wilk, 1965).
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There's nothing inherently special about ‘time’ as a within-subjects factor — you
only get that impression from books that distinguish ‘repeated measures (implying
time) from designs that are logically equivalent to within-subjects designs, e.g. in
agriculture. As always, the sphericity assumption should be checked; time also rep-
resents a continuous factor, so that trend analysis (p. 80) involving it may be mean-
ingful. And counterbalancing is often vital to avoid order effects. That's about it.

4.2 Analysis of pre-test versus post-test data

A very common design is as follows. Subjects are randomly assigned to groups (lev-
els of A), such as A; and A,. They are tested; the treatment (A; or A,) is applied;
they are retested. Since subjects were randomly assigned to groups, there are no
systematic group differences in the pre-test scores. The post-test scores reflect the
effects of the treatment. There are several ways to analyse this sort of design (Myers
& Well, 1995, pp. 305-306, p. 454; also Howell, 1997, p. 606-7):

1. Analysisof covariance (p. 138). When its assumptions are met, thisis the most
powerful. Basicaly, this assumes that the post-test scores are linear functions of
the pre-test scores. (It is often also assumed that the sopes of these functions
are the same at each level of A, but see p. 138). The analysis takes advantage of
this relationship, reducing error variability in the post-test scores by removing
variability accounted for by the pre-test scores.

2. Analysis of difference scores. For each subject, the pre-test score is subtracted
from the post-test scores; a one-factor ANOVA (using factor A) is then per-
formed on these scores. The approach assumes that the effect of each treatment
is to add a constant to the pretest score. Because this model is less likely to be
true than that assumed by the analysis of covariance, it will generally be a less
powerful test.

3. Analysis of post-test scores only. This approach is valid, but ignores informa-
tion (the pre-test scores) that could help to reduce error variance, and therefore
will be less powerful than those above.

4. Analysisusing a mixed design: A as a between-subjects factor, P as pre-test
versus post-test. Thisis frequently done. However, it will be a very conserva-
tive test of the main effect of A — it doesn't take account of the information
that the pre-test scores cannot be affected by A. A better test for A would be
that given by the A x P interaction, which isidentical to that obtained by per-
forming a one-way ANOVA on the difference scores — and as we saw above,
an analysis of covariance is generally better.

If the subjects haven't been randomly assigned to levels of A, then the analysis (or
the interpretation) can be much more difficult. If you don’t understand the principles
of multiple regression with correlated variables, don’t go there — just analyse the
post-test scores (Myers & Well, 1995, p. 306). Or understand the tricky stuff (Parts 6
& 7)...

4.3 Observing subjects repeatedly to increase power

An example: low-n experiment where subjects are precious. The dependent variable
is change in blood pressure in response to a conditioned stimulus (CS). Two CSs are
used: one signalling a high-incentive, tasty food, and the other signalling a low-



incentive, less-preferred food. Furthermore, subjects are tested following admini-
stration of a drug or placebo. The response of each subject to each CSis observed 6
times, to reduce the measurement error or increase power somehow (the experi-
menter feels that more observations should give more power, but can’t verbalize ex-
actly how). Presentation order is suitably counterbalanced. The original data layout
is shown below. How should this be analysed to maximize power?
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Subject (S)  Incentive (A)  Drug (B) Observation (C) Dependent variable
1 Low Placebo 1 datum

1 Low Placebo 2 datum

1 Low Placebo 3 datum

1 Low Placebo 4 datum

1 Low Placebo 5 datum

1 Low Placebo 6 datum

1 High Placebo 1 datum

1 High Placebo 2 datum

1 High Placebo 3 datum

1 Low Drug 1 datum

1 Low Drug 2 datum

1 High Drug 1 datum

1 High Drug 2 datum

2 Low Placebo 1 datum

2 Low Placebo 2 datum

3 subjects 2 levels 2 levels 6 observations per level 72 observations

We have these possible factors, even if we do not use them all: subject (S), which is
arandom factor (see p. 31); incentive (A), which is afixed factor; drug (B), which is
a fixed factor; perhaps observation (C), which we'll consider to be a fixed factor.
We seek to test the effects of A (does the response to a high incentive CS differ from
that to a low incentive CS?), B (does the response of a drugged subject differ from
that of a non-drugged subject?), and A x B (does the effect of incentive alter asare-
sult of the drug?) with maximum power.

Consider the options:

1. A and B are used as factors. No ‘subject’ term is entered, so it's effectively a
between-subjects design. Wrong. This is pseudoreplication; we are pretending
that we have 18 independent observations per AB combination. In fact, we have
3 subjects per AB combination with 6 observations per subject — and those ob-
servations are likely to be correlated, because they come from the same subject.
We must take account of this fact. Indeed, to do so is likely to improve our
power, by accounting for differences between subjects. Remember the key as-
sumption of ANOV A: that the error components (¢) are independent.

2. A, B, and S are used as factors. This is a design with two within-subjects fac-
tors. There are 6 observations per ‘cell’ (per ABS combination). We are as-
suming that there is no correlation between observations beyond that attribut-
able to them coming from the same subject/A/B combination. Somewhat re-
lated to within-subjects ANCOVA (Bland & Altman, 1995a) (see p. 152).
Valid.

3. A, B, C, and S are used as factors. This is a design with three within-subjects
factors. We have a factor of ‘observation number’. This may mean very little to
us (we wouldn't be interested in effects attributable to it), but we include it in
the hope that it removes some variability, reducing our error variability and im-
proving our power. We have one observation per cell. Valid.

4. We take the mean of the 6 observations per subject per AB combination. We
now have N = 12 observations rather than N = 72, but we expect the means to
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be more accurate estimators of the true effect on each subject. We analyse them
with A, B, and S as factors. We have one observation per cell. Valid.

So of designs 2—4, which isoptimal? They'll all give identical answers! Observing a
subject more than once in the same condition simply improves the precision with
which the subject is measured in that condition. Y ou can use that more precise mean
directly (design 4), or let the ANOVA maths work out the means for each condition
(designs 2 and 3). The variability that you reduce by measuring the subject repeat-
edly is the variability about the mean for that subject in that condition, not the vari-
ability associated with measuring the effect of factors A or B. Try it and see.

See also the CRD with subsampling and RCB with subsampling agricultural designs
(p. 186—).

4.4 'It's significant in this subject...’
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Words to strike fear into your heart. The scenario runs like this. An experimenter
using precious subj ects assigns them to sham or lesion groups. Each is measured re-
peatedly for its response to a stimulus paired with food (CS") and to a neutral
stimulus (CS?). Let’s say we have ten CS' observations and ten CS° observations per
subject.

It is, of course, completely valid to perform at test or equivalent ANOVA to ask
whether the effect of CS (CS' versus CS") is significant for that subject. Note that
you might use an unpaired (‘ between-subjects’) analysis, since the CS" data and the
CS° data are not related beyond the fact that they come from the same subject (which
is now your experimental ‘universe’) — unless there is some further factor that pairs
data points within each subject. (One such factor might be ‘trial pair’, if one trial
pair has one CS' and one CS’ presented close to each other in time.) However, the
conclusions of such atest apply only to that subject. You could not generalize it to
others (‘ subjectsin general with such-and-such alesion’).

I’ve seen arguments that run like this: “We compared a CS" and a CS’ for each sub-
ject to obtain a measurement of CS reactivity [a single number per subject]. We
compared these CS reactivity scores pre-operatively and post-operatively. The lesion
significantly reduced CS reactivity scores in 2 out of 4 lesioned subjects [note
within-one-subject significance tests]. None of the 4 sham-operated subjects showed
asignificant change in CS reactivity scores.” The implication that one is presumably
meant to draw is the lesion reduced CS reactivity. There are at least two fallacies
here:

e The significance tests for individual subjects don’t tell you that the change
was significant for agroup.

e (Ignoring the previous point for a moment...) ‘The change in reactivity
scores was significant for group A but not for group B; therefore group A
differed from group B.” This is a common statistical fallacy. There might
have been a decrease in scores for one group (p = 0.04) but not the other (p
= 0.06) — that does not mean that the two groups differed. That test would
require examination of the lesion x (pre-post) interaction — or, better (as we
saw above), an analysis of covariance with pre-operative scores as the co-
variate.

e Evenif you used ‘significant or not’" as a dichotomy — and it would be an
artificial dichotomy (using a criterion p value as a cut-off, rather than a
genuine dichotomy such as sex; see Howell, 1997, p. 286), the test across
groups would then be a »* contingency test with two variables (sham versus

lesion; changed versus unchanged). For this specific example, ,1/12 =267,p
=0.1,NS.



4.5 Should | add/remove a factor? Full versus reduced models
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Omitting relevant variables and including irrelevant variables can both alter your
estimate of effects of other variables (Myers & Well, 1995, pp. 519-521). Including
irrelevant variablesisn't too bad — this doesn't bias the estimate of the proportion
of variability accounted for by your other predictors, but it does use up error degrees
of freedom, reducing the power to detect effects of other variables. Omitting rele-
vant variables is worseg; it can substantially bias the estimates of the effects of the
other terms. As a simple example, suppose your data contain a main effect of A and
a main effect of B, but no interaction. If you were to analyse these data using a
model with just A and AB terms (and no B term), you’ve omitted a relevant vari-
able, and you can get a‘ spurious’ interaction.

There are various formal ways to work out the *best’ set of predictor variables to use
if you have a lot of potential predictors (e.g. forward selection, backward elimina-
tion, and stepwise regression; see Myers & Well, 1995, p. 516-518), but they are
primarily of use in descriptive (correlative, non-experimental) research and none of
them removes the need to think carefully about your experimental design.

People commonly neglect potentially important predictors (Myers & Well, 1995,
pp. 100-101, 149-151), such as who tested the subjects, because they’re not of inter-
est, or they weren't thought about. These are poor reasons. A good reason to remove
a predictor from an ANOVA is that you have evidence that it isn’'t contributing to
the prediction. If so, then by removing it, you may increase the power to detect other
effects. A good rule is to include all the potentially relevant predictors initially,
and consider removing a term if (a) you have a priori reason to think it'sirrele-
vant and (b) theterm isnot significant at the @ = 0.25 level (Myers & Well, 1995,
pp. 100-101, 151).

Note that a non-normal distribution of residuals (p. 36) may also suggest the need to
add another predictor (or to transform the dependent variable).

For example, suppose we have a three-way ANOVA (factors A, B, and C). The ex-
perimenter is primarily interested in the effects of A and B. The analysis shows that
none of the AxC, BxC, AxBxC terms are significant at the a = 0.25 level, but the
main effect of C is significant at « = 0.25. The plan would then be to drop out those
interactions, so you're left with A, B, AxB, and C.

Dropping out terms that are genuinely not contributing helps, because it increases
the error df (which increases power); the df and any variability attributable to the
term joins (is ‘pooled with’) the error df and error variability. Y ou hope that the er-
ror df go up but the error variability doesn’t — which should be the case if the term
wasn’'t contributing to the prediction. But if your term is actually contributing, then
pooling its variability as part of the error term also increases the E(MS) of the error
term, negatively biasing al your other F tests — making it less likely that you'll
detect other effectsthat you' re interested in (Myers & Well, 1995, pp. 149-151).

This argument also applies to the experimental design technique of blocking (Myers
& Well, 1995, pp. 157-158). Suppose we want to test the effect of different types of
teaching method (A) on reading skill (Y) in children, and subjects are randomly as-
signed to the levels of A. If there is considerable individual variation (variability
among subjects within groups — the error term for the ANOV A) we may have low
power to detect effects of A. One way to deal with thisis to block the subjects. We
would divide them into groups based on their performance on some variable, X
(perhaps 1Q?), that we believe to be highly correlated with Y. Suppose we used five
blocks: block B; would contain the children with the highest X scores, block B,
would have the next-highest X scores, and so on. Then we would randomly assign
the members of block B; to the different A conditions. We have made our one-factor
ANOVA into a two-factor ANOVA; we hope that this reduces the within-block in-
ter-subject variability, and therefore increases the power to detect effects of A. In
general, blocking is intended to reduce error variability (which increases power). Of
course, it uses up error df (which reduces power). Therefore, to get the best power,



you should choose the number of blocks based on N, a, and the correlation (p) be-
tween X and Y (see Myers & Well, 1995, pp. 157-158).

4.6 Should 1 add/remove/collapse over levels of a factor?
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The key thing to remember isthis:

_ MSpredictor _ SSpredictor ><d1:error

F

M Serror SSerror x df predictor

The more levels afactor has, the larger its dfyregicior, SO 0N its own this will reduce the
F statistic, and therefore the power to detect the effect of this factor. On the other
hand, if adding a level increases SSyegicior, POWEr goes up. And, al other things be-
ing equal, adding more observations increases power because it increases dfgqor.
Let’sillustrate this with a couple of examples:

4.6.1. Adding and removing levels by adding new observations

Taking new observations at further levels of afactor can reduce power:
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Equally, it’s very easy to imagine a situation in which a non-significant effect with a
few levels becomes a significant effect when subjects are measured at more levels
— avery easy example would be a drug measured at 0 and 0.1 mg doses, where 0.1
mg is below the effective dose; if 10 and 100 mg doses are added to the study, the
effect of the drug might emerge.

4.6.2. Collapsing over or subdividing levels

Collapsing over levels with similar means increases power:

Left: the dependent variable is
measured at only two levels of A
(n = 5 per group). Thereisa sig-
nificant effect of A (MS, = 4.349,
MSyror = 0.793, F1g = 5486, p =
0.047). Right: three more groups
have been measured. Even
though the original data is un-
changed, the effect of A is now
not significant (MSy, = 1.581,
MS,or = 0.808, F4,20 = 1.958, P
.14). Vertical lines represent
contributions to SS,; specifically,
SS, is the sum of the squares of
these vertical lines (deviations of
group means from the overall
mean).
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But collapsing over levels can have the opposite effect, if you collapse over levels

with dissimilar means:
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Left: there is not a significant
effect of A (SSy = 8.324, MS, =
2775, M%—ror = 1216, FS,lG =
2.281, p = 0.118). Right: if we
collapse over levels by combining
levels 1 and 2, and levels 3 and 4,
there is a significant effect of A
(SSy = 6.118, MS, = 6.118, MS,.
ror — 1.204, Fl,lB = 5.082, p =
0.037).

Left: there is a significant effect
of A (SS\ = 27549, MS, =
259613, M%ror = 20507, F3,16 =
7.165, p = 0.003). Right: if we
collapse over levels in the same
way as before, we reduce the sum
of squares and there is no longer
a significant effect of A (SSy =
7522, MS\ = 7.522, MSyor =
2.252, F1 15 = 3.34, p= 0.084).
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Part 5: using SPSS for ANOVA

5.1 Running ANOVAs using SPSS

5.1.1 Analysis of variance

You can perform ANOVAs from the Analyze — General Linear Model menu
(below).

fakedatab-1B1W . zsav - 5P55 Data Editor

File Edit Yiew Data Transform | Analyze Graphs  Utiities Window Help

ﬁln |§| n| | J E:sgzr[it;tive Statistics . jI—'IEI &@I

1

Custam Tables

Compare Means

3
3
»
A | depvar General Linear Model — » M
1 1.00 40.0 Mixed Models b Multivariate...
2 1.00 M0 Conelate »  Repeated Measures. .
g 1.00 420 Begression ¢ Wariance Compaohents
4 1.00 41.0 Loglinear b

‘Univariate’ analyses a single dependent variable. It will easily handle between-

subjects designs.

e Fill in your between-subjects factors as fixed factors and add any between-
subjects covariates (by default these will not interact with any factors).

e |t will also handle within-subjects designs if your dataisin a ‘one column, one
variable’ format — simply enter Subject as a random factor and enter al the
‘rea’ factors as fixed factors. However, this way of doing within-subjects
analysis may be slow and will not include Mauchly’s test or the Greenhouse-
Geisser or Huynh—Feldt corrections (explained above; see p. 25). Furthermore,
it will get the analysis of mixed models (models that have both between-subjects
and within-subjects factors) wrong unless you enter a custom model in the
‘Models’ dialogue box.

The easier way of analysing simple designs that include within-subjects factors is
with the Repeated M easures option; this requires that your data is in a ‘one row,
one subject’ format. This option also allows you to include between-subjects factors
and between-subjects covariates.

The ‘Multivariate’ option is used for analysing multiple dependent variables (mul-
tivariate analysis of variance: MANOVA), and we will not cover it.

5.1.2 Syntax

Whenever you see an ‘OK’ button to begin an analysis in SPSS, there will also be a
‘Paste’ button that will not run the analysis, but will copy the syntax for the analysis
into a syntax window (opening one if necessary). This allows you to edit the syntax,
if you want to do something complicated; it also allows you to save syntax so that
you can run large multi-step analysis time after time with the minimum of effort.
You can even include syntax to load data from afile, or retrieve it from an ODBC-
compatible database. The Run menu of a syntax window allows you to run all of a
syntax file, or part that you have selected.

B Spyntaxl - SP55 Syntax Editor

File Edit “iew Analyze Graphe Utilities | Bun indow  Help

3 ¥ [ o
=|d S ﬂ Ot E? ﬁ Selection

[THIANOV & Curent  Chl+R
depvar BY a ToEnd
MIETHOD = 33TYPER —
ANTERCEPT = INCLULE
fCRITERLA = ALPHA(DS)
/DESIGH =1a.
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5.1.3 Plots

SPSS can produce sketch plots along with its ANOV A output. Click the Plots option
of an ANOVA dialogue box and fill in the gaps. Click Add to add your plot to the
list once you' ve assembled its components.

Repeated Measures: Profile Plots i il
Factors: Horizontal &usis: Carliifue
e e —'l
b Cancel
[ Separate Lines:
o e |
Separate Plots:
E —
Plats: Add | LChange Hemove
cba

5.1.4 Options, including homogeneity-of-variance tests

All the ANOVA dialogue boxes aso allow you to set Options. By default, no op-
tions are ticked:

Repeated Measures: Options
— Estimated Marginal Mean:
Factor(g] and Factor Interactions: Dizplay Means for:
FOvERALLT
a
:
c
b
ac I~ | Campare mait effects
::E*c Confidence interval adjustment:
JL5D (rone) |
— Dizplay
[~ Descriptive statistics [~ Transformation matris
[~ Estimates of effect size I~ Homogeneity tests
[~ Observed power [~ Spread vs, level plats
[~ Parameter estimates I~ Besidual plats
[~ S5CF matrices I~ Lack of fit test
I~ Residual SSCP matrix [~ General estimable function
Significance lewvel: I.DS Confidence intervalz are 95%
Continue I Cancel | Help |

| find it useful to include descriptive statistics (including means and SEMs for all
levels of factors and interactions). | tend reflexively to compare main effects using a
Sidak correction. It’s certainly worthwhile including homogeneity tests to check the
assumptions of the ANOVA; SPSS will perform Levene's test for homogeneity of
variance (significant = heterogeneous = a problem) if you tick this box. The options
menu for the ‘Univariate’ analysislooks dightly different:



Repeated Measures: Options Univariate: Options
— E gtimated targinal tean: — E stimated M arginal Mean
FEactor(s] and Factor Interactions: Display Means for: Factor(s] and Factaor Interactions: Display Means for:
[OVERALL) a_war 3
a n
b C_war -
C 4 *
b
a'c ¥ Compare main effects a_warh_var ¥ Compare main effects
b:cx Confidence interval adjustment: a_\v'ar:c_val Confidence interval adjustment:
b b warc_war -
| 5idak -l v | sidak -l
- Displey Displap
[V Descriptive statistics [~ Transformation matrix I¥ Descriptive statistics T
[ Estimates of effect size Vi & I Estimates of effect size I~ Spread vs. level plat
[~ Observed power - | ) i I~ Observed power I~ Besidual plat
[~ Parameter estimates [~ BResidual plats [~ Parameter estimates [~ Lack of fit
[~ S5CP matrices [~ Lack of fit test [~ Contrast coefficient matris I~ General estimable function
[~ Residual SSCF matrix [~ General estimable function
Significatice level: I.DS Confidence intarvalz are 95%
Significance level: I.DS Confidence intervals are 95%
Contirue I Cancel Help
Continue I Cancel Help

5.1.5 Post hoc tests

SPSS will alow you to specify post hoc tests for between-subjects factors in the
‘Post hoc’ dialogue box:

Repeated Measures: Post Hoc Multiple Comparisons for

Factor(g): Post Hoc Tests for:

Continue |
Cancel |
Help |

a4

b = :

— Equal Yariances Azsumed
[~ LsD [~ SHEK I~ wallerDuncan
[~ Bonferani I~ Tukey Type [£Tvpe [ Erar, Batio: |1DD
[~ Sidak [~ Tukey'sh [~ Dunnett
™ Scheffe ™ Duncan Cortrol Categony: ILast 'I
[~ BEGWF [~ Hochberg's GT2 Test
I REGWO [~ Gabriel ’_5' 2-zided o Cantral = Control

— Equal Yariances Mot Assumed
[~ Tamhane's T2 [~ Dunnetts T3 [~ Games-Howel [~ Dunnett's C

It won't allow you to specify post-hoc tests for within-subjects factors, mainly be-
cause most post hoc tests are not suitable for use with within-subjects factors
(see Howell, 1997, p. 471). SPSS tries hard not to let you do something daft. The
simplest and usually best thing to do is to run a separate within-subjects ANOVA for
the data you want to perform a within-subjects post hoc test on.

5.2 Interpreting the output

56

Let's look at areal and fairly complicated analysis. It involves four factors. Rats
were received either lesions of the nucleus accumbens core (AcbC) or sham surgery.
Each group was further divided into three (delay = 0, 10, or 20 s). All rats were
placed in operant chambers with two levers present throughout each session. One
lever (Inactive) did nothing. The other (Active) delivered a single food pellet. In the
‘delay = O’ group, that pellet was delivered immediately. For the ‘delay = 10s
group, the pellet was delivered after a 10 s delay, and for the ‘delay = 20s' group,
after 20 s. They weretrained for 14 sessions each. These are our factors:

Factor Between-subjects (B) or within-subjects (W)  Number of levels  Levels

Lesion B 2 sham, AcbC
Delay B 3 0,10,20s
Lever W 2 active, inactive

Sesson W 14 1-14
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The datais entered into SPSS in ‘one subject, one row’ format (see p. 122), like this:

Subject  Lesion  Delay Sl Active Sl Inactive X Active S Inactive...

o1 sham 0 datum datum datum datum
02 sham 0 datum datum datum datum
019 sham 10 datum datum datum datum
O48 AcbC 20 datum datum datum datum

We have within-subjects factors and we have the data in one-subject-one-row for-
mat, so we choose Analyze — General Linear M odel — Repeated M easures:

Expl.sav - SPSS Data Editor

Eile Edit Yiew Data Transfom | Analyze Graphs  Utilies Window Help

= Reparts 3
EIEIQI 2'2' EI Descriptive Statistics 3 I@IEI EI@I |
442 #10_inac € Custom Tables v
Compare Means 3
General Linear kodel 3 Univariate,
1|AcbC Mised Modeks v Multivariate 010
2[AchC Correlate 4
Ellalily el > W ariance Components.
A|AchC Laoglinear Bl =
slachc Classify L4
Blachc Data Reduction 3 018
el Z‘:i‘:aramellic Tests : 027
BlAckC Time Series 3 03
9| AchC Survival 3 030
10} AchC Multiple Response 3 031
11| AchC Missing Yalue Analysis... 032
19l nne - e

We declare the within-subjects factors:

Repeated Measures Define Factoi(s] §3§" x|

‘wiithin-Subject Factor Name: -D efine
Number of Levels: l— Besat |
Cancel |
Help |

Meagure »»

fdd

LChange:
Femove

Now we fill in the between-subjects factors and assign individual columns to appro-
priate levels of the within-subjects factors:

: Repeated Measures

A} rat [rat] “within-Subjects Vanables  [session lever]:

8} group [aroup]

[ Paste
1] 2
s2_activi2.1] Beset |
32_inact[2,2]

E s3_activi3.1] Eancs\l
33_inact(3.2]
s4_activi4.1] Help |
34_inact(4.2]
35_activ(5,1]
s5_inact5.2]
3b_activ(B,1] |

B etween-Subjects Factor(s)
[A] spssgroup [lesion]

(A} delay [delay]

LCovariates:

Model | Contrasts. | Plats | Paost Hoe. I Save I Dptions. |

It's important to ensure that the within-subjects level assignments are correct — so
‘s5 inact’ is labelled as (5,2), and the dialogue box tells us that this refers to (ses-
sion, lever) — soit's going to be level 5 of session and level 2 of lever. Thisis cor-
rect. So we proceed to set appropriate options. I’'m going to tick loads of things so
we can interpret afairly full output:



Repeated Measures: Options S 5[
i Estimated Marginal Mean:
FEactor(s] and Factor Interactions:
(OWVERALL) B
lesion
delay
sEs5i0N
lever
lesion*delay W Compare main effects
\ESIDV\:SESS.IDH Confidence interval adjustment:
delay*session -
4 v ISn:Iak d
r Dizpla
¥ Descriptive statistics I Transtormation matriz
¥ Estimates of effect size ¥ Homogeneity tests
¥ Observed power I Spread vs. level plats
¥ Parameter estimates ™ Besidual plots
[~ S5CP matrices I Lack of fit test
[~ Residual SSCP matrix ™ General estimable function
Significance level: |.05 Confidence intervals are 95%
Continug I Cancel | Help |

| wouldn’'t normally tick ‘estimates of effect size’, ‘observed power’, or ‘parameter
estimates’. We can also set up some plots:

Repeated Measures: Profile Plots g i x|
Factors: Horizontal Axis: s
delay > [
lesion > Cancel
SESsion Separate Lines;

lever l— Help

Separate Plots:

0 N —

Plats: Add LChange | Eemove |

session’delaylever

SPSS doesn’t do very good graphs, and it'll only plot three factors at once. So this
plot has session on the horizontal axis, delay on separate lines, and lever on separate
plots. (The data will be collapsed across lesion, which means this graph won't give
us any indication of how the sham/Ilesion groups differed — not very helpful!)

OK. Now we could Paste the syntax for this command into the syntax editor to save
it and/or fiddle with it, or just click OK to run the analysis. Let’s run the analysis.
We get alot of stuff...

# General Linear Model

o

‘Witin Subjects Factors

Measure: MEASURE |

Dopendent
session _Lever | varsble
T T

7
3
T
B
B
7
5
5

B14_ACT

g

It's huge! Let’slook at them one by one.
e Title. Says‘General Linear Model’.

e Notes. None.

5: Using SPSS
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e Warnings. Tellsyou what it couldn’t do. Sometimes this information is helpful;
here, it's not very comprehensible and we ignore it.

e Within-subjectsfactors. Thistells you what you told it. It lists all your within-
subjects factors and tells you which column of data has been matched to each
level of the factor(s). If thisiswrong, the rest of your analysis will be meaning-
less, so it’s worth checking.

o Between-subjects factors. The same, but for between-subjects factors. It aso
gives you the number of subjects in each condition. Check this — it may not
always be what you expect. If a subject has missing data somewhere, SPSS will
default to chucking the subject out completely.

Between-Subjects Factors

il
spesgroup  AchC 20
sham 24
delay 0 14
10 14
20 14

e Descriptive statistics. Since we asked for this in the Options, we get along list

of cell means:
Descriptive Statistics

spssgroup  delay Mean Std. Deviation [}
S1_Active AchC 1} 8324 43428 [
10 RA586 14787 7
20 Ad14d 20784 7
Total BEYY 31313 20
sham 1} 3306 23671 8
10 8046 1218 8
0 6402 26392 8
Total a918 28700 24
Total 1} ad457 41122 14
10 7364 145498 14
20 a841 27236 14
Total R272 20820 44
21_Inactive AchC 1} 297 17663 [
10 AABR 26822 7
20 RB20 28929 7
Total 227 24541 20

e Multivariate tests. Ignore 'em; we're not analysing multiple dependent vari-
ables. We're analysing one (lever-pressing), predicted by four predictors (fac-
tors). So skip this.

e Mauchly’'s test of sphericity. For every within-subjects factor and interaction
of within-subjects factors, SPSS performs Mauchly’s test of sphericity. If it's
significant (‘Sig.” column = p < 0.05), then you should multiply your df by the
Huynh-Feldt epsilon £ listed by it. For example, the Session factor has vio-
lated the sphericity assumption and will have its df multiplied by € =0.287,
while the Session x Lever interaction will have its df multiplied by € = 0.464 .
The Lever factor has not violated the sphericity assumption. Sometimes you can
tell because the ‘Sig.” column has a p value that’s >0.05. Here, there’s no p
value — but since £ =1, we know that there’s no problem anyway.

Mauchly’s Test of Sphericity®
heasure: MEASURE_1
Epsilon”
Approx. Greenhous

Wiithin Subjects Effect | Mauchlvs ' | Chi-Sguare df Sig. e-Geisser | Huynh-Feldt | Lowsr-hound
SESSION ooo 465.481 a0 aoa 232 287 7 BA92E-02
LEVER 1.000 .ooo 0 . 1.000 1.000 1.000
SESSION * LEVER 000 288.316 a0 aoo 3565 464 7 R92E-02

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix

a. May be used to adjustthe degrees of freedom for the averaged tests of significance. Comected tests are displayed inthe
Tests of Within-Subjects Effects table

h

Design: Intercept+LESION+DELAY+LESION * DELAY
Within Subjects Design: SESSION+LEVER+SESSION*LEVER

e Tests of within-subjects effects. This is one of the important bits. There's a
set of rows for every within-subjects factor, or interaction involving a within-
subjects factor.



There's a columns corresponding to the SS (‘ Type 11 Sum of Squares —
SPSS has a few ways of calculating the SS and you almost certainly want
Typelll, which is the default).

It gives you the df. The top row (‘ sphericity assumed’) gives you the normal
df. The subsequent rows give you the df multiplied by the various correction
factors listed in the results of Mauchly’s test, including the Huynh—Feldt ep-
silon £ .

The MSisthe SSdivided by the df.

The F ratio is the MS for the term divided by the MS for the corresponding
error term. It's always the same, no matter whether you use the Huynh—Feldt
correction or not. For example, the F for Session (80.11) isthe MS for SES-
SION (9.045, 38.99, 31.475, or 117.584, depending on the df correction) di-
vided by the MS for ‘Error(SESSION)’ (.113, .487, .393, or 1.468, depend-
ing on the df correction).

The 'Sig.” column is the p value for the F ratio, assessed on the relevant
number of degrees of freedom. It may vary depending on whether or not you
need to use the Huynh—Feldt correction.

In this example, Lever doesn’t require any correction, so we would report
F138 = 678, p < 0.001 for the effect of Lever. However, Session requires a
Huynh—Feldt correction, as we saw above, so we would report Fz 736141 058 =
80.11, £ = 0.287, p < 0.001. If you correct the df, it's good practice to report
£ so readers can work out the original df (which tells them something about
your analysis).

Partial eta-squared is a column that only appeared because we ticked Es-
timates of effect sizein the Options. For details of n,fama, , see p. 102.

Noncent(rality) parameter and Observed power only appeared because
we ticked Observed power. The observed power is the probability that the F
test would detect a population difference between the two groups equal to
that implied by the sample difference (SPSS, 2001, p. 476). The noncentral-
ity parameter is used to calculate this (Howell, 1997, pp. 334-5).

Tests of Within-Subjects Effects

Measure: MEASURE 1

Type Il Surn Partial Eta Mancent. Ohserved
of Squares df Mean Sguare F Sig Squared Parameter Power”
Sphericity Assumed 117.084 13 9.044 80.110 .ooo 678 1041.429 1.000
Greenhouse-Geisser 117.684 3016 38.940 a0.110 aoa B78 241 580 1.000
Huynh-Feldt 117.684 3736 31.475 a0.110 aoa B78 299.270 1.000
Lower-hound 117 684 1.000 117 584 80110 oo H78 B0110 1.000
SESSION*LESION Sphericity Assumed 3.007 13 2 2.049 016 051 26633 845
Greenhouge-Geisser 3.007 3.016 897 2.049 11 051 6178 A15
Huynh-Feldt 3.007 3.736 804 2.049 085 051 7.653 480
Lower-hound 3.007 1.000 3.007 2.049 161 051 2.049 287
SESSION = DELAY Sphericity Assumed 826 26 316 2.793 aoa 128 72766 1.000
Greenhouse-Geisser 8.216 B.031 1.362 2799 014 128 16.8980 ReL]
Huynh-Feldt 8.216 7.471 1.100 2799 .oog 128 204910 820
Lower-hound 8.216 2.000 4.108 2.799 073 128 5.597 A18
SESSION*LESION * Sphericity Assumed 2.046 26 7.870E-02 697 867 035 18124 636
Greenhouse-Geisser 2.046 B.031 339 697 B53 035 4204 268
Huynh-Feldt 2.046 7.471 274 697 F84 035 5208 a02
Lower-bound 2046 2.000 1.023 697 a04 03& 1.394 159
Error{SESSION) Sphericity Assumed 55776 494 113
Greenhouse-Geisser 55776 114.538 487
Huynh-Feldt 55776 141.958 393
Lower-bound 55,776 38.000 1.468
Sphericity Assumed 412.256 1 412.256 678.473 .ooo 847 678.473 1.000
Greenhouge-Geisser 412.256 1.000 412.256 678.473 .ooo 847 678.473 1.000
Huynh-Feldt 412.256 1.000 412.256 678.473 .ooo 847 678.473 1.000
Lower-hound 412256 1.000 412 256 678.473 aoa 947 B78. 473 1.000
LEVER * LESION Sphericity Assumed 4 866 1 4.866 §.008 .oo7 74 2.008 a7
Greenhouse-Geisser 4. 866 1.000 4.866 §.008 .oo7 74 a.008 a7
Huynh-Feldt 4. 866 1.000 4.866 §.008 .oo7 74 a.008 787
Lower-hound 4.866 1.000 4.866 5.008 ooy 74 8.008 787
LEVER ™ DELAY Sphericity Assumed BE174 2 34.087 46.095 aoa 747 112148 1.000
Greenhouse-Geisser BE174 2.000 34.087 46.095 aoa 747 112188 1.000
Huynh-Feldt BE174 2.000 34.087 46.095 aoa 747 112148 1.000
Lower-bound B8.174 2.000 34.087 56.099 .aoo 747 112198 1.000
LEVER * LESION * Sphericity Assumed 6.278 2 3139 5.166 010 214 10332 798
Greenhouge-Geisser 6.278 2.000 3139 5.166 010 214 10332 796
Huynh-Feldt 6.278 2.000 3139 5.166 010 214 10332 796
Lower-hound 6278 2.000 3139 5.166 o1 14 10.332 T46
Error{LEYER) Sphericity Assumed 23.080 ag 608
Greenhouse-Geisser 23.090 38.000 808
Huynh-Feldt 23.090 38.000 808
Lower-hound 23.090 38.000 608
SESSION * LEVER Sphericity Assumed 68,423 13 6.263 65.086 .ooo 631 846.119 1.000

5: Using SPSS
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Tests of within-subjects contrasts. Well, we didn’'t ask for this explicitly and
we're not interested in any specific contrasts at the moment, so we'll ignore
this.

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type Il Sum Pattial Eta
Source SESSION LEVER | of Sguares ot Mean Sguare F Sig. Squared
SESSION Linear 90.232 1 90.232 163 ARS8 [ae]] 812
Quadratic 25782 1 25762 117.3585 [aleli] 7485
Cuhic 427 1 427 3178 0a3 or7
Order 4 347 1 347 1.966 169 043
Order & J20 1 720 B.745 013 151
Order & 1.390E-03 1 1.390E-03 01 eas oot
Order 7 1.078E-02 1 1.078E-02 285 598 oo7
Order & 3.208E-02 1 3.208E-02 918 344 024
Order 9 1.396E-02 1 1.396E-02 a4 467 014
Order 10 8.7258E-03 1 8.725E-03 342 562 ooy
Order 11 1.708E-02 1 1.708E-02 633 431 016
Order12 3.351E-03 1 3.351E-03 120 73 003
Order 13 8.174E-03 1 8.174E-03 234 631 008
SESSION * LESION Linear 6.717E-02 1 6.717E-02 122 724 003
Quadratic 2059 1 2.0589 g.381 004 1498
o s B = Trem e o

Levene's test of equality of error variances. A more important one: tests
whether the variances of the various data columns differs across groups (defined
by the between-subjects factors). This tests the homogeneity of variance as-
sumption of ANOVA. The results here aren’t ideal — we have a few violations
of this assumption (where p < 0.05). For example, the variability of ‘session 2,
active lever’ responses isn't the same across all six between-subjects groups
(sham-0, sham-10, sham-20, AcbC-0, AcbC-10, AcbC-20). These data have in
fact already been square-root transformed to try to improve matters, but there is
till a violation of the homogeneity of variance assumption in 7 of the 28 data
columns. We have to make a judgement about the robustness of ANOVA in
these circumstances (and the aternative analytical techniques available); al-
though significant, the variances don’t in fact differ by huge amounts if you
look at the descriptive statistics (for example, the session 2/active lever re-
sponses have SDs that range from 0.407 to 1.001 — a 2.5-fold difference,
which isn’t the end of the world as ANOVA is reasonably robust to that level of
violation; see p. 33).

Levene’s Test of Equality of Error Variances®

F dfl df2 Sig.
51_Active 1.329 5 38 273
51_Inactive 1.214 5 38 321
52_Active 6.407 5 38 .ooo
52_Inactive 1.404 a 38 212
53_Active 4.806 a 38 .00z
53_Inactive 633 a 38 676
S4_Active 2.869 a 38 027
S4_Inactive 1.089 a 38 377
S5_Active 986 8 38 430
S4_Inactive 4147 8 38 004
SE_Active 1.688 8 38 1681
SE_Inactive 4808 8 38 o3
57_Active 2189 5 38 078
57_Inactive 4.871 5 38 .00z
S8_Active 1.739 5 38 149
58_Inactive 3271 5 38 015
59_Active 2.349 a 38 ULE]
59_Inactive 1.337 a 38 270
S510_Active 800 a 38 491
S10_Inactive 2327 a 38 081
S11_Active 1.102 8 38 arh
S11_Inactive 2338 8 38 (i1}
S12_Active 1878 8 38 121
312_Inactive 1.838 8 38 129
513_Active 2.034 5 38 098
513_Inactive 1124 5 38 364
514_Active 1.185 5 38 335
514_Inactive 838 5 38 531

Tests the null hypothesis that the error variance of the dependent
variable is equal across groups
a. Design: Intercept+ LESION+DELAY+LESION * DELAY
Within Subjects Design:
SESSIOM+LEVER+SESSIONTLEYER

Tests of between-subjects effects. The other important bit that everyone will
want to look at. And very easy to interpret. We can see that there's a significant
effect of delay (F, 33 = 19.357, p < 0.001) and although there’ s no main effect of
lesion (F < 1, NS), there is a lesion x delay interaction (F,zs = 5.887, p =
0.006). Of course, we'd want to interpret all the within-subjects factors and the
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complex interactions too (for example, this data set has a 4-way session x lever
x lesion x delay interaction).

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transfarmed Wariahle: Average

Type Il Sum Partial Eta Naoncernt. Observed
Source of Suares df Mean Sguare F Sig. Sruared Parameter Power
Intercept 1924.574 1 1924.574 | 2234.808 ooo 983 2234809 1.000
LESION 463 1 463 a38 468 014 538 110
DELAY 33333 2 16.670 19.357 ooo 505 38714 1.000
LESION * DELAY 10,139 2 5.069 5.887 006 237 11.773 848
Etrar 32.725 38 861

a. Computed using alpha =05

Parameter estimates. Not really very useful unless we're doing some regres-
sion analysis, so it probably wasn’t worth ticking it for this analysis!

Parameter Estimates

95% Conl

Dependent Variable  Parameter B Std. Etrar t Sig. Lowet Bount
S1_Active Intercept 640 032 B.982 aao 45:

LESION=AChC

][ t -9.86E-02 134 - 736 466 =37

[LESIOM=gham Db

1

DELAY=0

][ -.310 130 -2.3e8 .0z2 -57.

DELAY=10

][ 164 130 1.267 213 -9.818E-0;

[DELAY=20 b

] a

[LESION=AChC

1* [DELAY=0 601 194 2.096 004 2m

1

[LESION=AChC

1* [DELAY=10 -4.72E-02 180 -.249 803 -43

1

[LESIOMN=AChC b

1* [DELAY=20 a

1

Estimated marginal means. These can be useful. SPSS gives the means for the
various levels of each factor (or interaction). | also ticked ‘Compare main ef-
fects... with a Sidak adjustment’ in the Options. This gives us some quick post-
hoc tests. If you have a factor with only two levels (e.g. Lesion), this tells you
nothing more than the ANOVA did. But for factors with >2 levels, it can be
useful. Here are the means for Delay, which it is certainly valid to perform post
hoc tests on (since it was significant in the ANOV A, above). We see the mean
(across al other variables) for Delay (‘ Estimates’), and then it compares pairs of
delays (0 v. 10, 0 v. 20, 10 v. 20) (‘Pairwise comparisons'). We aso get the
standard error of the mean (SEM) for each mean and the standard error of
the difference between means (SED) for every pairwise comparison (see p.
43—). Findly, it repeats the overal F test from the ANOVA (not very help-
fully; ‘Univariate Tests').

Tip: pairwise comparisons for interactions

Top tip: by default, SPSS only performs pairwise comparisons for factors, and
not interactions. If we were to Paste the syntax for this analysis, we'd see this
sort of thing:

/EMMEANS = TABLES (lesion) COMPARE ADJ (SIDAK)
/EMMEANS = TABLES (delay) COMPARE ADJ (SIDAK)
/EMMEANS = TABLES (session) COMPARE ADJ (SIDAK)
/EMMEANS = TABLES (lever) COMPARE ADJ (SIDAK)
/EMMEANS = TABLES (lesion*delay)

/EMMEANS = TABLES (lesion*session)

/EMMEANS = TABLES (delay*session)

Note that the main effects have coMpaRE and ADJ (SIDAK) on them, but the
interactions don't. If you want, you can add that in syntax! Like this:

/EMMEANS TABLES (lesion) COMPARE ADJ (SIDAK)
/EMMEANS = TABLES (delay) COMPARE ADJ (SIDAK)



/EMMEANS =
/EMMEANS =
/EMMEANS =
/EMMEANS =

TABLES (session) COMPARE ADJ (SIDAK)

TABLES (lever) COMPARE ADJ (SIDAK)

TABLES (lesion*delay) COMPARE (lesion) ADJ (SIDAK)
TABLES (lesion*delay) COMPARE (delay) ADJ (SIDAK)

You can't just put coMmpPARE, because SPSS wouldn’t know whether to compare
Lesion differences for each level of Delay, or Delay differences for each level
of Lesion. So you specify one other thing; for example, COMPARE (1esion)
would compare Lesion groups at each level of Delay. You can specify both
kinds of comparison, as| did above. The output also gives you the standard er-
ror of the difference for each comparison (see p. 45). Finally, you can specify
a Sidak correction to the tests by adding apg (s1pak), or similarly for Bonfer-
roni if you really want to. This can be extended to higher-order interactions; you
specify the factor you want to be compared at all possible combinations of the

other factors.

Estimates

Measure: MEASURE_1

95% Confidence Interval
delay Wean Std. Error | Lower Bound | Upper Bound
0 1.454 047 1.358 1.850
10 1.269 045 1477 1.361
20 1.047 .045 856 1.139

Pairwise Comparisons

heasure: MEASURE 1

Mean 95% Confidence Interval far
Difference Diffarence
ihdelay  (Jydelay i-J) Std. Error Sig : Lower Bound | Upper Bound
a 10 186* {066 022 2.168E-02 349
20 407* 066 oon 243 a71
10 0 - 186* 066 022 -.343 -2.168E-02
20 221 064 004 6.112E-02 382
20 0 - 407 il .non -A87T1 =243
10 -.221% 064 004 -.382 -6.112E-02

Based on estimated marginal means
. The mean difference is significant at the .05 level
a. Adjustment for multiple comparisons: Sidak

Univariate Tests

Measure: MEASURE_1

Sum of Partial Eta Moncent Ohbsered

Souares df Mean Sguare F Sy Sguared Parameter Power’
Contrast 119 2 584 18.357 ooo 404 38714 1.000
Error 1.169 38 3.076E-02

The F tests the effect of delay. This testis based on the linearly independent pairwise comparisons among the estimated
marginal rmeans.

8. Computed using alpha = .05

Observed * predicted * std. residual plots. SPSS's residual plots are a little
bit incomprehensible; see p. 36 for explanations.

Observed * Predicted * Std. Residual Plots
Dependent Variable: S1_Active

a o
o o
Ohserved o ] E o
El
g E , oEe
o a oo
o a " a
o 0¥ o Predicted o O o
o mao o mom
o mo o mna
o a
L@ o
ég B : g Stol. Resicual
1E §
- o
o” a ®

Model: Intercept + GROUP + DELAY + GROUP*DELAY

Profile plots. Finally, we get some not-so-pretty graphs:
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5.3. Further analysis: selecting cases
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In this situation, we'd want to do further analysis, especialy since we have a
hugely complex 4-way interaction. We might want to find out if there are effect of
Lesion or Delay if we only consider Active lever responses — easy, we just run an-
other repeated-measures ANOV A on the Active lever data only, without the Lever
factor. We might also want to see if there is an effect of delay/session/lever in the
shams aone. For this we might want to restrict the cases analysed by SPSS.

Choose Data — Select cases:

Thenclick If...

We only want to select casesif the lesion variable is equal to “ sham”:

Sample run - my data sav - SPS5 Data

File Edit Yiew | Data Transform  Analyze

o Define Dates
E =
EIEIQI = Insert¥aniable g
7 rat Inzert Cases

Gota Cage.

Ach 5ot Cases..

Achl Transpose...

AchC, Restructure:

Merge Files b

ALggregate. —

Orthogonal Design » [

1
2
3
4 ]
5| AchC,
5
7
B
g

: Select Cases

® 512_Inactive [s12_L2
512 Active [¢12_ac
@ S11_Inactive [s11_
® S11_Active [s11_ac
@ 510 Inactive [+10.
@ 510_Active [s10_ac
® 51_Inactive [s1_ina
@ 51_Active [s1_acti
@ 513 Active [s13_ac
® 513 _Inactive [s13.1
G 514 Active [¢14_ac
@ 514_Inactive [s14_
® 52_Active [s2_acty
@ 52 Inactive [s2_ina
@ 53_Active [sﬂ_acli\.;l
A il

-~ Select

@l cases
& if condition is satisfied

t

" Random sample of cases

Sample:

i

" Based on lime of case range

i

Fange...

" Use filter variable:

—

Unselected Cases Ar
’7(3' Filtered  Deleted

Cunrent Status: Do nat filter cases

ok I Baste | ﬁesetl Eam:ell Help I

Select Cases: If x|
# 512 Inactive [s12_ L% lesion = "sharm'" ]
< 512_tetive [12_ac
#5171 _Inactive [s11_ |

B 511 _Active [s11_ac
< 510_Inactive [s10_F
@ 510_Active [s10_ac
51 _Inactive [s1_ina
@ 51_Active [s1_activ
(8] delay [delay]

[8} spssgroup [lesion]

E‘) rat [rat]
Boooloonl

+| <] | 7|e| 9] Eunctions B

ABS[numespr)
ANY(test value, value,...]
ARSIM[numexpr)

AR TAM[numexpr)
COFMORM(zvalue)
COF.BERMOULLI(g,p)

Eﬂnlinuel Cancel | Help




: Select Cases

®

512 Active [¢12_ac
@ S11_Inactive [s11_
® S11_Active [s11_ac
@ 510 Inactive [+10.
@ 510_Active [s10_ac
® 51_Inactive [s1_ina
@ 51_Active [s1_acti
@ 513 Active [s13_ac
® 513 _Inactive [s13.1

Click Continue and the condition is entered into the previous dialogue box:

-~ Select

i pll cases
* |F gondition i satisfied

t

lesion = “sham'"

" Random sample of cases

i

Sample:

" Based on lime of case range

i

Fange...

" Use filter variable:
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G 514 Active [¢14_ac
@ 514_Inactive [s14_

® 52_Active [s2_acty

@ 52 Inactive [s2_ina Unselected Cases An

< 53_Active [s3_acti e (6‘ Filtered  Deleted ‘
~ s

Cunrent Status: Do nat filter cases

aK I Paste | ﬁesetl Eam:ell Help I

Click OK. You'll now find that al cases (rows) that don't match your criterion are
crossed out, and won't be analysed:

Sample run - my data.sav - SPSS Datd

Fle Edit Yiew Data Transform  Analyze

S (8] B || o =k
‘? Trat |DE?
lesion

AchC 010
AchC 013
AchC 015
4[AchC 016
AchC 017
AchC 018
AchC 027
AchC 029
AchC 030
AchC 031
AchC 032
AchC 033
AchC 034
) AchC 044
AchC 045
AchC 045
AchC 047
AchC 048
AchC 0439
AchC 050
21|sham [0}
22(sham 02
23[sham 03
24|sham 04
25 sham 05
261 sham 03]

5.4 The ‘intercept’, ‘total’, and ‘corrected total’ terms

When you run an ANOV A with SPSS, by default it includes the intercept term. To
turn this on/off with the menus, click on the ‘Model’ button:

Univariate: Model

— Specify Model :
@ Full factorial " Custom

Factaors & Covariates: _Model: | Cancel I
F
A Help |
Build Tem|z]

I Interaction 'l

Sum of sguares: IT_Irlpe 1 vl I~




Y ou can then choose to ‘Include intercept in model” or not. In syntax, you can add

the command

or

What does this do? Let’s illustrate with some sample data for an ANOVA with a

/INTERCEPT = EXCLUDE

/INTERCEPT = INCLUDE

single between-subjects factor with two levels:
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A D 3 | < S < - S -

Tabe A e | 007 (B (x=%) S S
X

Ay 10.00 6.55 8.77 151 4.93 11.90 76.91 100.00 42.90
Ay 14.00 6.55 8.77 27.35 4.93 55.50 76.91 196.00 42.90
Az 8.00 6.55 8.77 0.59 493 2.10 76.91 64.00 42.90
Az 7.00 6.55 8.77 3.13 493 0.20 76.91 49.00 42.90
A; 2.00 6.55 8.77 45.83 493 20.70 76.91 4.00 42.90
Ay 10.00 6.55 8.77 151 4.93 11.90 76.91 100.00 42.90
Az 1.00 6.55 8.77 60.37 493 30.80 76.91 1.00 42.90
A; 3.00 6.55 8.77 33.29 493 12.60 76.91 9.00 42.90
Az 2.00 6.55 8.77 45,83 493 20.70 76.91 4,00 42.90
Az 8.50 6.55 8.77 0.07 493 3.80 76.91 72.25 42.90
A 14.29 10.99 8.77 30.47 493 10.89 76.91 204.20 120.78
A 18.49 10.99 8.77 94.48 493 56.25 76.91 341.88 120.78
A, 12.46 10.99 8.77 13.62 4.93 2.16 76.91 155.25 120.78
A 11.63 10.99 8.77 8.18 4,93 0.41 76.91 135.26 120.78
A 6.66 10.99 8.77 4.45 493 18.75 76.91 44.36 120.78
A, 14.02 10.99 8.77 27.56 4.93 9.18 76.91 196.56 120.78
A, 5.66 10.99 8.77 9.67 4.93 28.41 76.91 32.04 120.78
A 7.06 10.99 8.77 292 493 15.44 76.91 49.84 120.78
A, 6.37 10.99 8.77 5.76 4.93 21.34 76.91 40.58 120.78
A, 13.26 10.99 8.77 20.16 4.93 5.15 76.91 175.83 120.78
a=2 n=10per 436.78 98.57 338.22 1538.26 1975.04 1636.83
group =SS = SSa = SSaror = SSmercepl = SSota = SShodel
as usually with with
N=an calculated intercept intercept
included  aspart of
model

If you run this analysis with the intercept included, SPSS prints this:

Tests of Between-Subjects Effects

Dependent Variable: DEPVAR

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 98.5682 1 98.568 5.246 .034
Intercept 1538.258 1 1538.258 81.867 .000
A 98.568 1 98.568 5.246 .034
Error 338.216 18 18.790
Total 1975.042 20
Corrected Total 436.784 19

a. R Squared = .226 (Adjusted R Squared = .183)

o Here, itsSSya is X X% ; its dfi iS N.
e Theintercept itself (the grand mean) has SSyercept = NX? With dfipyercept = 1.

e The 'corrected total’, SScorected totd = SSota — SSintercept 1S What we normally

think of as SSy, Namely Z(x—i)2 , with the usual df of N —1.
e Theeffect of Aisgivenby SS, =¥ n(X,—X)?, dfx=a—1.

e The corrected model’ models the effects of the factor(s), A, ignoring the ef-
fect of the intercept (the grand mean). If you have more than one factor, the
‘corrected model’ term isthe sum of all their effects: SSeorested mode = SStotal —

SSIntercept - SSerror-

e Theerroris caculated asusual: SS,, =Z(X—XA)2 y Ofgrr = (N=1) — (@ —

1).
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Incidentally, the F test on the intercept term (M Spercept/ M Serror) tests the null
hypothesis that the grand mean is zero. If you run an ANOVA with no factors
other than the intercept (or with a factor with only one level, which SPSS will let
you do), it is equivalent to a one-samplet test comparing al N observations to zero;

asforany ttest, Fy, =tZ and t, = /Fy .
If you don’t include the intercept, you get this:

Tests of Between-Subjects Effects

Dependent Variable: DEPVAR

Type Il Sum
Source of Squares df Mean Square F Sig.
Model 1636.8262 2 818.413 43.556 .000
A 1636.826 2 818.413 43.556 .000
Error 338.216 18 18.790
Total 1975.042 20

a. R Squared = .829 (Adjusted R Squared = .810)

In other words, when you exclude the intercept, the model models the effects of the
factor(s), A, and the intercept, together, without distinguishing the two. In this case,
it calculates

o SSuais XX itsdfia iSN.
e Themodel (intercept plus effect of A) has SS, 4 = Zm‘(ﬁ ,df=a=2(df =
2 because therearetwo X, meansand one overall X mean).

e SS, iscaculated without considering the difference between the effect of A
and the grand mean as we would usually do, so SSy = SSige fOr this one-
factor case.

e Theerroriscaculated as usual: SSy =X (X—Xp)? , Aferrr = (N = 1) — (@ —
1).

It should be fairly clear that you probably want to ‘include’ the intercept when
running ANOVAsin SPSS. Thisisthe default.
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Part 6: advanced topics — harder things about ANOVA

6.1 Rules for calculating sums of squares

6.1.1 Partitioning sums of squares

Sums of squares are partitioned exactly as degrees of freedom (see below, p. 68).
This requires a structural model. We've seen several examples of this, and many
more are discussed in Part 7.

6.1.2 General rulefor calculating sums of squares

e Every SS corresponds to a term in the structural model that represents the dif-
ference between two quantities P and Q.

e Every SSisthe summed squared deviation of P from Q.

e |f aterm contributing to the SSis based on n observations, multiply its contri-
bution by n.

For example, for two between-subjects factors A and B, the structural model is

Yik = u+a; + B +of + &

and if there are a levels of A, b levels of B, and n subjects (independent observa-
tions) per AB combination, the SS are

Term Sum of squares

H SSintercept = Ny> — generally ignored

0 = lp — U SS, =Y nb(y, - y)? — each ¥, mean based on nb scores

ﬁ,—=,qu—ﬂ SSg =Y na(yg — ¥)?> — each ¥z mean based on na scores

of = tne, ~ (U +0i + ) SSug =X N(Vpg — ¥)*—(SSa +SSz) — each yng mean based on n
scores

gjk =Y —(W+oi+ fi+offy)  SS, . =3 (y-¥)* —(SSs +SSs +SSap) = SSipia — (SSa +SSs +SSag)

SStotal =>(y- y)z = SSA +SSB +SSAB +Sserror

2 .
SSgrand total including intercept — SStotal + SSintercept = Z y — general ly |gnored

We first saw the general technique for deriving these SS equations on p. 15 (and an-
other is on p. 159): we rearrange the structural model to give Y;; —x on the left-

hand side, expand out the definition of all the terms, simplify, square both sides of
the equation (so we have SSyy on the left-hand side), and eliminate a number of
terms that sum to zero.

The expected value of the squared terms in the structural model are directly related
to the E(MS), discussed below (p. 73); for example, E(sf)=0;

E(e?) =02 +nboj.

6.2 Rules for calculating degrees of freedom

From Keppel (1991, pp. 207-214). For any source of variance:

e The df equal the number of different observations on which each sum of
squares is based, minus the number of constraints operating on these obser-
vations. (This is the definition of df in general: the number of independent



observations, or the number of observations minus the number of con-
straints.)

For between-subjects designs:

e Themain effect of afactor with alevelshasa — 1 df. So dfy =a—1 and dfg
=b-1

e The main effect of a covariate has 1 df (since its effect is represented by a
straight line, which can be determined by two parameters, but the line is
constrained to pass through the overall mean, so the one df represents the
line’'s slope; it’s thus akin to a factor with two levels).

e Thedf for an A x B interaction, where A has a levelsand B has b levels, is
the product of the two separate dfs, i.e. dfaxg = (a—1)(b—1).

e The total number of dfs is the number of observations N minus 1, i.e. (N —
1).

e Theerror or residua df is dfy,y minus the sum of everything else.

We partition dfs in exactly the same way as SSs. For example, for an A x B x S de-
sign,

Sstotal = SSA + SSB + SSA><B + SSerror
dftotal = de + de + de><B + dferror

For within-subjects and mixed designs, most of the above till holds, but we don’t
have just asingle ‘error’ term. Taking ‘groups’ to refer to groups of subjects defined
by between-subjects factors:

Ofpetween subjects = total subjects—1
dfwithin subjects = dftotd - dfbetween subjects
dfsubj ects within groups = dfbetween subjects — dfgroups

deSfactor X subjects within groups = dfwithin subjects — deSfactor - deS factor x groups

If a group is defined by the between-subjects factor A, we would write ‘subjects
within groups as ‘S/A’. For example, if we have the design A x (U x S) with a
between-subjects factor A with 3 levels, n = 8 subjects per group (24 subjects total),
and a within-subjects factor U with 6 levels, we would be able to calculate:

Ofia =N—-1=anu-1=(3x8x6)—1=143

Ofpetween subjects = total subjects—1=24—-1=23
dfa=a-1=3-1=2

dfs/a = dfpeween sujects — dfa = 23 =2 =21

dfithin subjects — Ofiota — Ofpetween subjects = 143-23=120
dfy=u-1=6-1=5

deXA:dexde:ZXSZ 10

dfuxs/a = dfuithin subjects — dfy — dfyxa =120 -5-10 = 105

We partition sums of squares in exactly the same way as dfs (described for this par-
ticular design in more detail later), like this:

SSiota = SSpetween subjects T SSwithin subjects
Ssoetween subjects = SSA + SSS/A
SSyithin subjects = SSu + SSyxa + SSuxs/a

You can see that this exactly mirrors the df partitioning shown above (with suitable
simple arithmetic rearrangement).

6.3 Nasty bit: unequal group sizes and non-orthogonal sums of squares
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This can be very complicated. So far we've assumed that equal-sized experimental
groups have been sampled from equal-sized treatment populations. If thisis not the
case, we can have problems. Firstly, unequal ns exaggerate the problem of heteroge-



neity of variance (see Myers & Well, 1995, pp. 105-106) (and see p. 33). Secondly,
they can really screw up an ANOVA.

6.3.1 Proportional cell frequencies

If we have unequal population sizes and the sample sizes reflect the ratios of their
sizes— and, if there is >1 factor, the inequalities are in consistent proportions across
those factors — we're OK. For example, suppose (Myers & Well, 1995, p. 151) we
know that Labour, Conservative, and Liberal Democrat supporters are present in our
population in the ratio 4:3:3, and we know that two-thirds of each group voted in the
last election. We could quite reasonably run experiments on them with the following
numbers of subjects:

Labour Conservative Lib Dem
Voted 24 18 18
Did not vote 12 9 9

No huge problem here. Suppose we use two between-subjects factors A and B again,
as above. Suppose there there are a levels of A and b levels of B. But now suppose
there are n; observations for condition A;, n; observations for condition B;, and nj; ob-
servations for condition AB;. Since every SS has a contribution from every observa-
tion it’s based on, the formulae are till very simple:
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Term Sum of squares
il SSinercept = Ny> — generally ignored
0 = plp — U SS, =X N (V4 - ¥)? —since ¥, isbased onn; scores
I
B =g — U SSy =%nj (Vg, —Y)? —since Vg, isbased on n scores
oy = ke, — (U +0i+ ) SSas ZiZnij (Yag, ~Y)? ~(SSx +SS5) — since Yap, is based on n;
scores |

&jk =ik —(Wj+ e+ Bi+affy)  SS, ., =3 (y-¥)? —(SSs +SSp +SSpp) =SS — (SSa +SSs +SSag)

SSipta =2 (Y- 37)2 =SSy + SSg + SSup + SSyror

2 .
Ssgrand total including intercept — SSigta + SSnteroept =2 y° — generdly ignored

6.3.2 Disproportionate cell frequencies— a problem

Here's an example (from Howell, 1997, p. 430): experimenters test the number of
errors made by sober and by drunk people on a simulated driving test. Two experi-
ments divide up the work, testing half the subjects in their Michigan lab and half in
their Arizona lab. They have absolutely no reason to think that the choice of state
makes any difference. These are their results:

Number of errors  Sober Drunk

Michigan 13, 15, 14, 16, 12 18, 20, 22, 19, 21, Michigan mean =18.0

23,17, 18, 22, 20

(n=5, mean = 14) (n =10, mean = 20)

Arizona 13, 15, 18, 14, 10, 12, 24, 25,17, 16, 18 Arizona mean = 15.9

16, 17, 15, 10, 14

(n=11, mean = 14) (n =5, mean = 20)

Sober mean = 14 Drunk mean = 20

It appears that drunk subjects make more errors than sober subjects, which makes
sense, but it also looks like Michigan subjects make more errors than Arizona sub-
jects. But clearly that’s an Alcohol effect masquerading as a State effect — the
Michigan lab tested a higher proportion of its subjects while drunk. The two factors
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are correlated, thanks to disproportionate cell frequencies — if you knew whether a
subject was drunk or sober, you could guess better than chance which state the sub-
ject came from. What can we do? We can use unweighted means. When we calcu-
lated the Michigan mean, we calculated it as a weighted mean (where M = Michi-
gan, S = sober, D = drunk in the formula):

. XYustXZYmp
Ym =
Ny

_ MvsYum,s+MvpYum.p
= ~

_ 5x14+10x20 _
- 15

18

This is weighted in the sense that the contribution of individual cell means (Y s
and yy p ) isweighted by the sample sizes (ny, 5 and ny ). An unweighted mean

(or, more properly, an equally weighted mean) is what you get when you simply
average the cell means, ignoring the number of subjects in each cell. That would
give us a Michigan mean of (14 + 20)/2 = 17, and an Arizona mean exactly the
same. In an unweighted-means analysis, each cell mean contributes equally to the
calculation of each of the sums of squares. In the calculation, we calculate an aver-
age cell size (the harmonic mean of the cells sizes, see revision maths chapter, p.
213) and use that average n as if every cell had that many subjects (Howell, 1997,
pp. 430-435).

This is a specific example of a general problem — when the effects of two or more
effects (or interactions) are not fully independent. The example shown above is
fairly common (the effects of one factor, State, are partly correlated with the effects
of another, Alcohol, because one state tested a higher proportion of drunks). It may
be easier to visualize the problem with an even more extreme example — one in
which two factors A and B are completely correlated. Consider this particularly stu-
pid set of data collected as part of an A, x B, x S design (Myers & Well, 1995, p.
153):

Ay Az
B; | noobservations 18
12
11
7
14
6
7
6
B, | 10 no observations
14
8
7
2
10
1
3

Let’s calculate the SS. Each observation makes one contribution to the SS, as usual,
so we should define n; as the number of observations at level A;, n; as the number of
observations at level B;, and nj; as the number of observations at AiB;. Then
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SSi = X (Y- ¥)? =322.00
SS, =X n(Va - ¥)* =4225
]

SSp =2 n;(Vg, —¥)* =42.25
i
SSag =21 (Yag, — ¥)? —(SSy +5Sg) = —42.25
ij

SSuror = SSiota — (SSa +SSg +SSpg) = 279.75

Pretty stupid; we have a negative SSyg! The problem isthat the effects of A and B in
this design are not orthogonal; the main effects of A and B are perfectly correlated
(simply because there are only observations for A;B, and A,B3; the effects of A and
B are confounded). If we added two A;B; and two A,B, observations, the effects of
A and B are now not perfectly correlated, but they are still correlated. The problem
can be illustrated like this:

SStotal SStotal

NN

SSerror SSerror

Orthogonal sums of squares Nonorthogonal sums of squares

If we calculate SS, in the usual way, it consists of t+u+v+w. On the other hand, if
we adjust it for the contribution of the other main effect B, it would consist of t+w.
Or we could adjust it for the contribution of B and AB, in which case the adjusted
SS, would consist only of t. Similar options exist for the other sources of variance.
The appropriate choice probably depends on the importance the experimenter at-
taches to the various factors (Myers & Well, 1995, p. 155). See also Howell (1997,
pp. 578-582).

This also means that the order you enter terms into a computer analysis can af-
fect the results. On some packages, an ANOV A with the sources of variance being
A, B, and A x B gives you a different answer from an ANOVA with the sources of
variance being B, A, and A x B. The default method in SPSS does not care about
the order — it's what SPSS refers to as the ‘Type I1I’ sum of squares. | think
(Myers & Well, 1995, p. 155) that this method uses areat for SS,, area x for SSg,
and z for SSpg. Thisis probably what you want — it is certainly appropriate for the
case when thereis chance variation in cell frequencies, such as when subjects drop
out at random (Myers & Well, 1995, p. 155). It is aso the method approximated by
the ‘unweighted (equally weighted) means' solution described above (Howell, 1997,
p. 582).

In general, whenever cell frequencies (ns in each cell) are equal or proportional
(meaning that for each cell, n; = nini/N), the sums of squares are orthogonal (unless
the experiment itself has been mis-designed and confounds two variables). But
whenever cell frequences are disproportionate, the sums of squares are nonor -
thogonal (Myers & Well, 1995, p. 154; Howell, 1997, pp. 429-435 and 578-579).

This problem occurs whenever predictor variables are themselves correlated (see
also Myers & Well, 1995, pp. 555-563). ANOV A with equal cell frequenciesis ex-
actly equivaent to multiple regression with uncorrelated categorical variables
(Myers & Well, 1995, p. 536), and ANOV A with disproportionate cell frequencies
implies that the factors are correlated. This is easy to see: if our Autism x Sex ex-
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periment has 8 male autistics, 2 female autistics, 2 male controls, and 8 female con-
trols (disproportionate cell frequencies), you can make a better-than chance guess as
to whether a subject is male or female if you know whether they’ re autistic or not —
the two factors are correlated. It is, of course, possible to have a middle ground —
unequal but proportionate cell frequencies (see above, p. 70, for an example), which
still involves orthogonal sums of squares.

6.4 Expected mean squares (EMS) and error terms
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First we need to consider the sampling fraction for fixed and random factors (fixed
and random factors are defined on p. 31). If we have factor A with alevelsand it is
afixed factor, we have sampled all the levels. We can say that the maximum number
of levelsof A isan = @, and the sampling fraction a/an. = 1. On the other hand, if
our factor is a random factor, an, is likely to be very large, so a/ay. = 0, approxi-
mately. Take the example of subjects: we presume that our s subjects are sampled
from avery large population, Sy = ==, S0 the sampling fraction /S = 0.

It is possible to have sampling fractions between 0 and 1 (Howell, 1997, p. 423) —
but you will have to work out some messy EMSs yourself. Software packages such
as SPSS assume that the sampling fraction is 1 for fixed factors and O for random
factors.

6.4.1 Rulesfor obtaining expected mean squares (EMS)

From Myers & Well (1995, p. 299). Let’s list the rules with an illustrative example.
Suppose we have one between-subjects factor A with 3 levels. There are 6 subjects
per level of the between-subjects factor (n = 6). There are 4 levels of a within-
subjects factor B.

1. Decide for each independent variable, including Subjects, whether it is fixed or
random. Assign aletter to designate each variable. Assign another letter to rep-
resent the number of levels of each variable. (In our example, the variables are
designated A, B, and S the levels are a, b, and n respectively. A and B are fixed
and Sisrandom.)

2. Determine the sources of variance (SS) from the structural model. (We've a-
ready seen what this produces for our example design, when we discussed it
earlier: SSy is made up of SSy + SSg/a + SSg + SSag + SSse/a. These are our
sources of variance.)

3. List 62 aspart of each EMS.

4. For each EMS, list the null hypothesis component — that is, the component cor-
responding directly to the source of variance under consideration. (Thus, we add

nboi tothe EMSfor the Aline, and bo3, , to the EMS for the /A line.) Note
that a component consists of three parts:

e A coefficient representing the number of scores at each level of the effect

(for example, nb scores at each level of A, or b scoresfor each subject).
° 0'2
[Myers & Well (1995, pp. 299) use oﬁ if Aisarandom factor, and

Bi if Aisafixed factor; Howell (1997, p. 423) doesn’'t, and | think

it's clearer not to.]
e Assubscripts, those letters that designate the effect under consideration.

5. Now add to each EMS all components whose subscripts contain all the letters
designating the source of variance in question. (For example, since the subscript

SB/A contains the letters Sand A, add 0%, , to the EMS for the /A line.)
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6. Next, examine the components for each source of variance. If a dash (/) ap-
pears in the subscript, define only the letters to the left of the slash as *essen-
tia’. If there are several slashes, only the letters preceding the leftmost dlash are
essentid. If thereisno slash, al letters are essential.

7. Among the essential letters, ignore any that are necessary to designate the
source of variance. (If the source of variance is A, for example, then when con-

sidering noﬁB , ignore the A. If the source is /A, then when considering the

0%, A component, S and B are essential subscripts and Siis to be ignored.) If

any of the remaining (non-ignored) essential letters designate fixed variables,
delete the entire component from the EMS.

An example:

Term EMS so far

Step 1: identify variables and numbers of levels.

A, a (between-subjects factor)
B, b (within-subjects factor)
S, n (number of subjects per group)

Step 2: identify sources of variance.

A
S/A
B

BA
SB/A

Step 3: List 62 aspart of each EMS.

S/A o2
B o2
BA o2
SB/A o2

Step 4: list the null hypothesis component.

A o2 +nbo?
S/A oﬁ + bGé,A
B ol +ano?
BA o2 +Nn03,
SB/A 05 +0%n

Step 5: add all components whose subscripts contain all the letters desig-
nating the source of variance in question.

A o2 +nbo2 +bol 4 +NoEs+ 0% A
A 2 2 2

S/ O¢ +bog a+0&/A

B 02 +anch +Noda+ 0% A

BA 02 +NoEA+ 0% a

2, 2
SB/A Oc + O/




Steps 6 and 7: for each component, define ‘essential’ letters; ignore any that
are part of the designation of the source of variance; if any remaining es-
sential letters contain fixed factors, delete the component.

A o2 +nboi +bol A
S/A o2 +bo3 .
B ol +anck + 05
BA 02 +N02A+0% A
SB/A 0L+ 0% A

6.4.2 Choosing an error term

A mean sguare qualifies as an error term for testing an effect if its E(MS) matches
the E(M Sgeet) iN @l respects except the null-hypothesis component (Keppel, 1991,
p. 568). In our example above, therefore, we'd test MS, against MSs/a, and we'd
test both MSz and M S against M Ssg/a.

6.4.3 Pooling error terms

When we have random factors in a model, important variables are often tested
against an interaction term. Since interaction terms have few df (and since power
depends on F being large when the null hypothesis is false, and since F is the ratio
Of M Sttt 10 MSqror, @nd since M Sgror 1S SServor/ Aferror), this means we may have
poor power to detect such effects.

One possibility is to test interaction terms in a full model with a conservative crite-
rion, like this (Howell, 1997, p. 425). If thereis an interaction (p < 0.05), we declare
that there’s an interaction. If thereisn’t (0.05 < p < 0.25), we just look at the results
for other terms. But if there is no interaction (p > 0.25), we remove the interaction
term from the model. In the example above, if we found that the AB interaction was
not significant (p > 0.25), we could remove any terms including it and its df would
contribute to the within-subjects error term, which might increase power to detect
effects of B (see p. 51).

6.5 Contrasts
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See Howell (1997, pp. 354-369); Myers & Well (1995, chapter 6).
6.5.1. Linear contrasts

Linear contrasts are comparisons between linear combinations of different groups.
Suppose we want to know whether students are more bored on Wednesdays than
other weekdays, because Wednesday is statistics day, and whether they’re more
bored on weekdays than weekends. We could measure their boredom on all days of
the week, and use DayOfWeek as a factor (with 7 levels) in an ANOVA. If this
turned up significant, we would know that all days were not the same — but it
wouldn’t answer our original questions. We can do that with linear contrasts.

In general, alinear contrast is alinear combination of a set of treatment means. Each
mean 4 is weighted by a weight w;:

L=wWytty +Woldy +...+ Wl = 2 Wi U
j

suchthat > w; =0
j

In our example, suppose x4 isthe Monday mean, /4, is the Tuesday mean, and so on.
Our ‘Wednesdays versus other weekdays question can be written as a linear con-
trast:



L= Hmon +/uTue +:uThu + U
4

~ Hwed
or

1 1 1 1
L =+—finmon +— Hrue —bwed + = trhu +— Hrri + Olsy + Olig
4 4 4 4
Equivalently (multiply everything up to get whole numbers):

L =+1tpon + Tty — Alhwed +Ltbrhy +Tgi + Oltsy +Ottgn

If the Wednesday mean is the same as the mean of the other weekdays, we expect
that L = 0. So our null hypothesisisthat L = 0. If astatistical test rgjects this null hy-
pothesis (shows that L deviates from 0 more than chance alone would predict), we
would conclude that Wednesdays were different from other weekdays. Our ‘week-
days versus weekends' question could be written as a different linear contrast:

1
= Hsin

1 1 1 1 1 1
L= +g/1Mon +g;uTue +g/1Wed +§;uThu +g:uFri —Hsa ~ 2

2

Again, if the null hypothesis (weekdays the same as weekends) is true, the expected
value of L is 0. Comparisons between individual pairs of means can aso be accom-
plished with linear contrasts — for example, Sunday versus Monday (the ‘back to
work’ effect?):

L =+1tyon + Ottrye + Ottweg + Ottriy + Ot — Opisy —Lttgn

For any contrast,
L2

SScontrast =
2
swi
J

All linear contrasts have 1 df per contrast. The significance test of a contrast is given
by F= Mscontrast/M Serror-

6.5.2. Typel error rateswith planned contrasts

If we ran pairwise comparison post hoc tests on our days-of-the-week example,
we'd make 27C =21 pairwise comparisons, so if we used o = 0.05 per comparison,
our familywise ary Would be a huge 0.66. We'd run the risk of falsely declaring all
sorts of differences significant. But our experiment was only designed to answer
three questions: Wednesdays v. other weekdays, weekdays v. weekends, and Sun-
daysv. Mondays. So if we only ask these questions, which we had in mind a priori,
we could never declare the ‘Monday v. Tuesday’ difference significant. Ask fewer
guestions, less chance of a Type error.

In general, the methods of controlling for Type | errors are the same in principle for
a priori and post hoc tests. The differences are simply (1) that we generally ask
fewer questions a priori, and (2) when we perform post hoc tests we often focus on
the differences that look biggest — which is logically equivalent to performing all
possible comparisons (visualy) and then selecting the biggest for statistical testing.
Since this has a high likelihood of a Type | error, such data-guided post hoc tests
must be corrected as if we were making al possible comparisons (because actualy
we are). As Myers & Well (1995, p. 179) put it, ‘the effective size of a family of
post hoc contrasts is determined not by the number of contrasts actually tested but
by those that conceivably might have been tested, had the data suggested it was
worth doing so’.

When we specify in advance (a priori) which comparisons we're interested in, we
can specify the Type | error rate per contrast (EC or o) or per family of contrasts (EF
or arpy). What should congtitute a ‘family’ of contrasts? All the contrasts an experi-
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menter ever runs? All that are published in a single paper? Most people would say
no; although that would result in avery low Type | error rate, it would lead to a high
Type Il error rate (low power) — missing real differences. There are two serious
candidates for a ‘family’ (Myers & Well, 1995, p. 178). They are (1) al the con-
trasts made in a single experiment; (2) all the contrasts associated with a single
source of variance in a single experiment. Suppose your experiment has three fac-
tors, A, B, and C. By the first criterion, all contrasts in your A x B x C design to-
gether congtitute one family. By the second criterion, there are seven families (in-
volving A, B, C, AB, AC, BC, and ABC). Myers & Well (1995, p. 178) recommend
the second criterion as a reasonable compromise between Type | and Type |l errors.

Once you' ve decided how many contrasts are in a family, you can reduce your EC
(o), or increase your p values, to obtain the desired EF (ary). For example, you
could use the Bonferroni or Sidak corrections discussed above; these are simple
(though the Bonferroni is over-conservative, so | prefer the Sidak). If you run k con-
trasts that are independent (orthogonal, see p. 77), apw = 1 — (1— @)%, so the Sidak
correction is spot on. If your contrasts are not independent, apy < 1 — (1— a)* (Myers
& Well, 1995, p. 177) but it is hard to calculate arpy exactly, so just use the Sidak or
Bonferroni correction and at worst your tests will be conservative.

Planned contrasts may be conducted whether or not the overall F testsfrom the
ANOVA aresignificant (Myers & Well, 1995, p. 179). In fact, you could run them
instead of the usual ANOVA, but you are recommended to run the ANOVA too
(Myers & Well, 1995, pp. 179, 196). Why? (1) Because our theories are rarely good
enough that we are willing to forgo checking whether unanticipated effects are pres-
ent in the data with post hoc tests, suitably controlled for Type | error. (2) The
ANOVA carries additional information, for example about the effect size; see p.
97—. Note also that the ANOVA may give a different result from a family of post
hoc tests, since the power of the ANOVA is that of the ‘maximum contrast’ (Myers
& Well, 1995, p. 196), which may not be obvious or interesting (e.g. it may reflect a
linear combination of groups that you wouldn't have thought about in advance, such
as 0.3xMon + 0.7xTue — 0.4xWed — 0.6xSat).

6.5.3. Orthogonal contrasts

Contrasts are orthogonal if the questions they ask are independent. This is one set of
6 orthogonal contrasts for our days-of-the-week example, showing how you can
break down a set of meansinto a set of orthogonal contrasts:

(Mon, Tue, Wed, Thu, Fri) v. (Sat, Sun)
(Mon, Tue) v. (Wed, Thu, Fri) (Sat) v. (Sun)
(Mon) v. (Tue) (Wed) v. (Thu, Fri)
(Thu) v. (Fri)

All these are independent of each other. But these two are not independent:

(Mon) v. (Tue) (Mon) v. (Wed)

There are many possible sets of orthogona contrasts (some of them involving odd
fractional combinations of day means, which might not be very meaningful experi-
mentally!). For any complete set of orthogonal contrasts, SS;eqment = 2 SSeontrast »
and df yegtment = 2 I conrase - SO for our days-of-the-week example, we would need 6

orthogonal contrasts for a complete set; the set of 6 shown above is one complete
Set.

Formally, two contrasts L, =Y W;qu; and L, =X w;,u; are orthogonal if, for
j j

equal sample sizes, 3 wj;Wj; =0 (Howell, 1997, p. 361). The more general con-
]

- e e v VioWie)
dition, for unequal sample sizes, is Y ———~=0 (Myers & Well, 1995, p. 176).
i n;
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There' s no reason that we should test only orthogonal contrasts — we test the con-
trasts that ask the questions we're interested in.

6.5.4. Linear contrastsin SPSS

In SPSS, to run linear contrasts other than very specific ones (such as comparing all
groups separately to the last one), you need to specify the design in syntax using the
/CONTRAST () =SPECIAL () Of /LMATRIX command. For a between-subjects ANOVA
of a dependent variable (depvar) with one factor (Day, 7 levels), you can specify
your contrasts like this:

UNIANOVA
depvar BY day

/CONTRAST (day)=Special(0.25 0.25 -1 0.25 0.25 O 0
0.2 0.2 0.2 0.2 0.2 -0.5 -0.5
1 0 0 0 0 0 -1)

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.O05)
/PRINT = TEST (LMATRIX)
/DESIGN = day .

The /pr1nT... cCOMmMand makes your custom contrast matrix appear under the head-
ing Custom Hypothesis Tests, followed by the results (significance values for each
test), followed by the sum of sguares for the contrast. In this example you can see
that contrast L1 is ‘Wednesdays v. other weekdays', L2 is ‘weekdays v. weekends',
and L3 is'Sundaysv. Mondays'. All are significant in this example.

Custom Hypothesis Tests

Contrast Coefficients (L' Matrix)

DAY Special Cantrast
Parameter L1 L2 L3
Intercept .ooo oo ooo
[DAY=1.00] 250 200 1.000
> [DAY=2.00] 250 200 aon
[DAY=3.00] -1.000 200 aon
[DAY=4.00] 250 200 aon
[DAY=5.00] .250 200 aoo
[Dav=6.001 0oo -500 oon
[DAY=7.00] 000 -500 -1.000

The default display of this matrix is the transpose
ofthe corresponding L rmatrix.

Contrast Results (K Matrix)

Depende
nt
Wariahle
DAY Spacial Contrast DEPWAR
L1 Contrast Estimate s
Hypothesized Value i
Difference (Estimate - Hypothesized) 115
Std. Error 067
Sig ono
45% Confidence Interval  Lower Bound 177
for Difference Upper Bound 453
L2 Contrast Estimate -1.184
Hypothesized Value i
Difference (Estimate - Hypothesized) 1184
Std. Error 050
Sig ono
45% Confidence Interval  Lower Bound -1.287
for Difierence Upper Bound -1.080
L3 Contrast Estimate -1.134
Hypothesized Value i
Difference (Estimate - Hypothesized) 1134
Std. Error 085
Sig ono
45% Confidence Interval  Lower Bound -1.308
for Difference Upper Bound -~ 959
Test Results
Dependent Yariable: DEPWAR
Sum of
Source Squares df Mean Sguare F Sig
Contrast 10.403 3 3.488 191.080 ooo
Errar 508 28 018

Alternatively, you can use the LMATRIX syntax, which alows you to specify any
linear combination of any number of factors or interactions (SPSS, 2001, pp. 478-9).
It may help to read the GLM section to understand this (p. 84—, especially p. 93—).
For our simple example the syntax would be:

UNIANOVA
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depvar BY day

/LMATRIX = "Wed v _otherweekday"

day 0.25 0.25 -1 0.25 0.25 0 0
/LMATRIX = "weekday v wkend"

day 0.2 0.2 0.2 0.2 0.2 -0.5 -0.5
/LMATRIX = "sun_v_mon"

day 1 0 0 0 0 0 -1

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/PRINT = TEST (LMATRIX)
/DESIGN = day .

or to put all the tests into one matrix as before,

UNIANOVA
depvar BY day

/LMATRIX = day 0.25 0.25 -1 0.25 0.25 O 0;
day 0.2 0.2 0.2 0.2 0.2 -0.5 -0.5;
day 1 0 0 0 0 0 -1

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.O05)
/PRINT = TEST (LMATRIX)
/DESIGN = day .

If you want to obtain separate sums of sguares for each contrast (reasons for which
are given below), you can use the version with several /imMaTrRIX cOmmands — you
get one ‘Test Results' box with one sum of squares for each /LmvaTrRIX command.
(I’ s also possible to work out SSyonyras from the ‘ contrast estimate’ L given in the re-

L2

sults and the weight coefficients printed in the L matriX, using SSeynyas = ——7—
Zwj /n,
J

but thisis rather apain.)

If you specify nonorthogonal contrasts, like this:

UNIANOVA
depvar BY a
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)

/LMATRIX = "contrastl" a -1 +1 0 0 O
/LMATRIX = "contrast2" a -1 0 +1 0 O
/LMATRIX = "bothtogether" a -1 +1 0 0 0;

a-104+100
/PRINT = TEST (LMATRIX)
/DESIGN = a .

then you will find that SSconrasin + SScontrastz % SShothtogether- FOI @ discussion of corre-
lated (nonorthogonal) predictors, see above and pp. 70 and 97.

6.5.5. Contrastsin multifactor designs — an overview

The same principles can be applied to any contrast, even involving multiple factors
(Myers & Well, 1995, pp. 188-185). Suppose we have two factors. therapy type (A:
control CON, analytic therapy AT, behaviour therapy BT, cognitive therapy CT) and
patient diagnosis (B: unipolar depression D, schizophrenia S, manic depression M).
We measure some sort of dependent variable. We find a main effect of A, amain ef-
fect of B, and an AB interaction. We can therefore reject these null hypotheses:

Qcon = 0aT =gt =0ct =0
Bo=Ps=pPu=0

Bconp =---=Pcrm =0

We can ask further questions using contrasts. Does the mean of control subjects dif-
fer from the mean of all the therapy populations? That would be a single contrast:
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+ +
L, : eon _Hat ﬂgT Hcr

Call this (control) versus (all other treatments) the ‘treatment effect’. Does the
treatment effect vary over clinical populations? That would involving seeing if three
contrasts differ:

_ Hat T Har + Her

T = Hcon 3
To = fconp — Hat,D +:uB:'3I',D +Hcrp
Te = Heons - Hptst ﬂeg,s tHcrs
Tur = Heons - Hpatm + IUB;,M +lcTtm

This is harder but possible (Myers & Well, 1995, pp. 190-5); it involves testing a
sum of squares based on the deviations of Tp, Ts, and Ty, from the overall treatment
effect T. And so on. An SPSS-based example of this sort of thing is given on p.
93—.

6.6 Trend analysis: the effects of quantitative factors
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6.6.1. Trends

Factors are categorical variables. But some categories are qualitative (male/female;
bipolar/schizophrenic/control) and some are quantitative (session 1/2/3...,
stimulus height 7 cm/9 cm/11 cm...). How can we ask quantitative questions about
the relationship between stimulus height and our dependent variable? Well, if the
predictor variables are continuous (covariates), you can ask things like ‘is my de-
pendent variable a linear function of the predictor? (simple ANCOVA = linear re-
gression, see p. 135) or ‘is my dependent variable a quadratic function of the pre-
dictor? (polynomial ANCOVA, see p. 88—). But with categorical predictors (fac-
tors), you usetrend analysis (see Myers & Well, 1995, chapter 7; Howell, 1997, pp.
386-396). Obvioudly, this technique requires that the levels of the factor are in some
sort of order.

We can accomplish this using contrasts but with particular weights for our contrast
coefficients. For example, returning to our days-of-the-week example, taking just
the weekdays, we can ask:

Mon Tue Wed Thu Fii
Do people get happier during the week? 2 -1 0 +1 +2
A linear trend.
Are people happier in the middle of the week? +2 - 2  +1  +2

A quadratic trend, an example of a non-linear (curved) trend.

So for our linear example, we could test the contrast

L =200 —Lttrue + Othwed +Ltdrhy + 2l g
Hqo:L=0

The contrast coefficients shown above would be valid if (1) the values of the factor
are equally spaced, as they are for days of the week, and (2) each mean is based on
the same number of scores. If not, see below.



One common approach to trend testing is to ask what set of trends explain the data
well (Myers & Well, 1995, pp. 209-216). Here we would be guided by our theories.
Suppose (Myers & Well, 1995, p. 204) we are performing a generalization exper-
mient; we train subjects that an 11" stimulus predicts electric shock. We might ex-
pect that an 11" stimulus would elicit a substantial skin conductance response,
which would generalize somewhat to 9" and 13" stimuli, but less so to 77 and 15"
stimuli. This would be an inverted-U-shaped curve, and such a curve can be de-
scribed by a quadratic equation (y = a + bx?, where b < 0). So the responses to
7/9/11/13/15” stimuli might be something like 1/4/9/4/1 units. We might also
expect that larger stimuli cause more of a response — a straight line relationship
between stimulus size and response, which can be described by a linear equation (y
= a + bx). So if this were the only thing influencing responding, responding for the
7/9/11/13/15" stimuli might be something like 1/2/3/4/5 units. Overal, if
these two effects are independent, we might expect an asymmetric inverted-U curve,
the sum of the other two effects (y = by + bix + bx¥) — in this example,
2/6/12/8/6 units.

We can perform an ANOVA to ask if the stimuli differ. Suppose they do — the ef-
fect of the factor is significant. We know that taking full account of our factor, A,
can explain a certain amount of variance: SS,, such that SSqiq = SSa + SSaror- AP-
plying Occam’s razor, it's common to ask first whether a straight line (a linear
trend) can explain the data well. Suppose we obtain a sum of squares for our linear
contrast, SSnes- We can see if this accounts for a significant amount of variability:
Fiinear = M Siinear/ M Serror- S0 does the effect of A include something over and above a
linear component? Well, SSy = SSinear + SShoniiner (@Nd, of course, dfy = dfjjpey +
Ofontiner = 1 + dfoniinear). SO We can calculate an F test to see if there's anything
‘substantial’ in that nonlinear component: F.nontinear/df-error = M Shontinear M Serror- This
isan F test for thelack of fit of the linear model (see also Myers & Well, 1995, p.
411) — we know how much variability A accounts for overall; the question is, what
component of that islinear and what is not. If thisisn’'t significant, our linear model
does a good enough job — we stop. If it is, we can add in a quadratic trend. We
would now have SS, = SSjjjex + SSquadraic + SShigher-order- WE CaN test SSgner-order 10
see if we should add any other predictors (SSyic...) and carry on until the ‘lefto-
vers no longer contain anything significant. However, if your theory predicts cer-
tain components (e.g. linear and quadratic), you shouldn’'t perform tests that you're
not interested in (Myers & Well, 1995, p. 216).

If you have a groups, then you can fit at most a polynomial of order a—1. So if you
have 5 groups, you can only fit a linear (x%), quadratic (x), cubic (x°), and quartic
(x*) trend; you haven’t got enough data to fit a quintic (x°) trend. So in general, the
most complex polynomial equation that can be fitted with a groupsis

Yj =by+b X, +0, X+ 4D X P+ + b X2

To apply this technique, the trends (SSinear, SSquadraiic: ---) have to be independent of
each other, or orthogonal, so that their sums of squares add up to SS,.

If (1) the values of the factor are equally spaced, as they are for days of the week,
and (2) each mean is based on the same number of scores, coefficients can easily be
generated for a set of orthogonal polynomials (Myers & Well, 1995, pp. 209-216
and Table D7; Howell, 1997, p. 391 and Appendix Polynomial). It is possible to de-
rive coefficients when the ns are not equal and/or the groups are not equally spaced
(Myers & Well, 1995, pp. 211, 227-229) but it is much simpler to use standard lin-
ear and/or nonlinear regression techniques, treating the predictor as a continuous
variable (see pp. 82, 88—, 135).

6.6.2. Trend analysisin SPSS

In SPSS, polynomial contrasts can be done easily. In the example of an ANOVA
with afactor A, specify this:

UNIANOVA
depvar BY a
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/CONTRAST (a)=Polynomial
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/PRINT = TEST (LMATRIX)
/DESIGN = a .

Y ou can also specify the contrast coefficients by hand. For a factor with five levels,
equally spaced, with equal n, you could use:

UNIANOVA
depvar BY a
/LMATRIX = "a linear" a-2-1 0 1 2
/LMATRIX = "a quadratic" a 2 -1 -2 -1 2
/LMATRIX = "a cubic" a-1 2 0-2 1
/LMATRIX = "a quartic" a 1-4 6 -4 1

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.O05)
/PRINT = TEST (LMATRIX)
/DESIGN = a .

To use the ANOVA dialogue box (Analyze — General Linear Model — ...), choose
Contrasts, set the contrast for your factor to ‘ Polynomial’, and click change. To get
the LMATRIX printout, choose Options — Contrast coefficient matrix. Other
forms of contrast (and the lack-of-fit test described above for ‘is there anything sig-
nificant left over that needs to be accounted for?") can be specified by hand using the
syntax outlined above (p. 77).

For one-way ANOVA, better output is obtained from Analyze — Compare means
— One-way ANOVA. Click Contrasts — Polynomial, and enter the order of the
polynomial. Y ou may also want Options — M eans plot. The output looks like this:

ANOVA
ILLMESE

Surn of
Sruares of Mean Square F Sig.
Between (Comhbined) B791.540 1697.885 20779 ooo
Groups Linear Term Contrast 174.845 174.845 2140 147
Deviation

BE16 65 2205 565 26,992 oo

Quadratic Contrast B100.889

Term Deviation 515 806

Cubic Term Contrast 389.205

Deviation 126 601

dth-order Term  Conirast 126.601

‘Within Groups TYB2.700
Total 14554.240

B100.233 74 BA3 oo
257903 3156 047
380205 4763 032
126 601 1548 palil
126,601 1.549 pali

81.713

- L e T

9
9

6.6.3.How trend analysis relates to multiple regression or polynomial ANCOVA

Trend analysis described how well linear, quadratic, etc., components fit the means
of each group. Suppose A is your factor (five levels: 77, 9", 11", 13", and 15" stim-
uli). Your dependent variable is Y: you have 20 observations per level (100 sub-
jects). You could treat A as afactor, as we' ve seen, or as a continuous variable.

e |f you performed a linear regression or ANCOV A with your predictor vari-
able having one of the values 7, 9, 11, 13, and 15 for al the subjects, and
your independent variable being Y, you would find that your SS;egression Was
the same as the SS;jey from the ANOV A contrast.

o If you performed a linear regression with your predictor variable having the
values 72, 9% 117 137 and 15° and your independent variable being Y, you
would not obtain SSygraic. Trend analysis assumes that the centre of the
quadratic function is in the middle of your groups. In our example, the
‘middle value’ is 11. So the quadratic trend analysis calculates
y=a+b(x—11)?, not y=a-+bx?. If you obtain SSegeson With (x — 11) as
your predictor, you will obtain SSyagaic from the ANOVA contrast. You'll
also obtain the same answer if you use the quadratic trend coefficients (2, —
1, -2, 1, 2) asyour predictor (°) values.

e Youd think that SSyc IS the SSegesion YOU Obtain with the regression
model §=a+b(x—11)%. But the cubic trend analysis coefficients for five
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groups are (-1, 2, 0, -2, 1), so that’s what you need to use as your predictor
values to obtain SSy .. 1'd initially thought they’d be something like (-8, —
1, 0, 1, 8) — but the problem is that these values are not orthogonal to the
other (linear, quadratic) components. Specifically, (-8, —1, O, 1, 8) is not
orthogonal to the linear component. If you use (-1, 2, 0, =2, 1) your cubic
predictor values, you do obtain SS. . Thisis the cubic component over and
above any linear component.

If you put al these predictors into a multiple regression, you get the correct
SS for each component as long as the predictors are orthogonal; otherwise,
they start to reduce each other’s SS (see pp. 70 and 97).

Each of the SSs should be compared to the overall M S, from the ANOVA
to get the same F values for all the components. The multiple regression ap-
proach can never measure the *group means’ for different values of A in the
way the ANOVA does, so it can never measure the ‘lack of fit’. Its SSyo-
multiple-regression F€dUCES towards SSyqr-.anova @S You put in more predictors and
the prediction gets better. To work out whether it’s worth putting another
predictor in, you would have to compare the multiple regression R? values
for models with and without the extra predictor (see p. 86—). This is one
advantage of trend analysis — you begin by knowing how much variability
the group means of your factor account for (which the multiple regression
doesn’t), and you try to work out what polynomial components contribute to
that.
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6.7 How computers perform complex ANOVASs: the general linear model (GLM)

6.7.1 The basic idea of a GLM, illustrated with multiple regression
Following Howell (1997, p. 567), suppose we want to solve a multiple-regression
equation to predict Y with three predictors (variables X, X,, and X3). Our eguation
is.
or, written out for an individual observation:

Y =by +by X1 +b, X 5 +05Xj 5+
where i stands for a particular observation (labelled from 1 to n) and g is the error
associated with each observation. We could write that using vector (matrix) notation
(see revision chapter on matrices, p. 196):

y=bgy+bx; +b,X, +bgxs +€

wherey, Xy, Xo, X3 are n x 1 vectors of data, e isan n x 1 vector of errors, and by is
an n x 1 vector whose elements are the intercept. This can be further reduced to

y=Xb+e

where there are p predictor variables, X isan n x (p + 1) matrix of predictors, the
first column of which contains only ones, and b isa (p + 1) x 1 matrix of regression
coefficients — like this:

1 Xy Xz Xz | |bp| [&
1 X X X

_ 21 2,2 23 | (o} 4 &
1 X1 X o X 3 b,
1 xn,l Xn,z xn,3 bs en

y

Solving a multiple regression equation then becomes the problem of solving
y =Xb +e for b so asto minimize the sum of squares of the residuals, > (Y; —Y)

or Y e? . Whenthisis solved, b contains the correct regression coefficients.

Three things are worth noting. Firstly, the multiple regression coefficient R is the

correlation between Y and Y, and its square is the proportion of variability ac-
counted for by the overall regression:

Ssregron

ss,

R? =

Secondly, the contribution of individual predictors may be easy to specify (if the
predictors themselves aren't correlated, in which case réchp,edim represents the

proportion of total variation explained by each predictor and R?=Y réch predictor ) OF

rather tricky to specify (if the predictors are correlated); see Myers & Well (1995,
pp. 505-508). And just as r for a sample can be adjusted (to r,) to provide a better
estimate of p for the underlying population, R? can also be adjusted according to the
sample size (Myers & Well, 1995, p. 508-9) (see p. 98). Other issues regarding mul-
tiple regression are discussed by Howell (1997, ch. 15).



Thirdly, the method of solving this matrix equation is pretty damn complicated
when there are severa predictors. It's illustrated for linear regression (and even
more complicated cases) at

www.mathworld.com/ L eastSquaresFitting.html
www.mathworld.com/NonlinearL eastSquaresFitting.html

and a general proof isgiven on p. 204, but we'll just leave SPSSto do it for us.
6.7.2 Using a GLM for simple ANOVA: the design matrix

How can we represent ANOVA in this way? Suppose we take our old favourite, the
one-way ANOV A with a single between-subjects factor, A. Our equation for thisis

YIJ :/,l+Ti +8ij

where 7; isthe effect of level i of factor A. This symbol z; represents z,, 7, 73 ... 75 (if
there are a levels of factor A) but for one subject we are only interested in the con-
tribution of one level of A. We can accomplish this with something called a design
matrix. The design matrix, X, will have a + 1 columns and as many rows as there ae
subjects. Suppose (after Howell, 1997, p. 567) there are 6 subjects, 3 levels of A,
and 2 subjects per level. Then our design matrix looks like this (the ‘S or Subject
columnis purely for explanation and isn’t part of the matrix):

S u A A A
1 [1100
2 1100
Xx=3 |1 010
4 1010
5 1001
6 (100 1]

So subjects 1 and 2 experienced treatment A;, subjects 3 and 4 experienced treat-
ments A,, and subjects 5 and 6 experienced treatments As;. All subjects experienced
the effect of the overall mean, so the first column is full of ones. We can now define
our treatment matrix and write the whole thing in matrix form:

1100 a1
1010| |7 |&:
y= X +
l O l 0 1'2 eZ,Z
100 1| |z3] |ey
100 1] & |
y=Xt+e

Solving this equation for T so as to minimize ye? gives us the treatment effects (u,
11, T, T3) WE're after.

However, for practical use, it's common to alter the design matrix dlightly. Firstly,
the u column has no variance, so it can’t go into a standard multiple regression
analysis, so we remove it. Secondly, the A; column is redundant: if a subject isn’t in
A;or A, we know it'sin Az (i.e. there are only 2 df for A), so we remove that too.
Finally, to make our treatment effects matrix give treatment effects that are relative
to the overall mean (u), the mean of each column must be zero (corresponding to the
ANOVA requirement that >, z; =0). We can achieve this by scoring a subject 1 in

column A; if the subject is a member of treatment A;, scoring —1 if the subject is a
member of the last (ath) treatment, and scoring O otherwise. (This is sometimes
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called sigma-restricted parameterization, since the columns sum to zero, while the
original form is called the overparameterized model, since it contains redundant in-
formation. It is possible to analyse using the overparameterized model; see
www.statsoft.nl/textbook/stgim.html.) Anyway, this process gives us this revised
design matrix, which carries all the necessary information:

1 0
1 0
0 1
X:
0 1
-1 -1
__1 _1_

6.7.3 Example of a GLM for a one-way ANOVA

So suppose we have these data (one datum per subject):

A A, A A,
8 5 3 6
9
7

7 4 4
3 1 9

To analyse them with a GLM, we use a set of matrices like this (one row per sub-
ject):

8 1 0 O
9 1 0 O
7 1 0 O
5 0O 1 O
7 0O 1 O
2
3 0O 1 O
3 0O 0 1
73
4 0O 0 1
1 0O 0 1
6 -1 -1 -1
4 -1 -1 -1
9] [-1 -1 -1j
Y=Xb+e
Y=Xt+e

The regression coefficient matrix can be called b (as it was for multiple regression)

or T (asit was for ANOVA). The overall R? will represent =98 and testing it for
otal

significance is the same as testing the effect of A for significance. The intercept in

the regression model will equal the grand mean (Howell, 1997, p. 571-2).

6.7.4 GLM for two-way ANOVA and beyond

Let's move up to a two-way ANOVA, with between-subjects factors A and B
(Howell, 1997, p. 572). Our full model is

Yik =+ + B +off + &

We can easily deal with the o; and f; terms in a design matrix. To represent the in-
teraction, af;, we use the fact that an interaction represents a multiplicative effect of
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the two variables. Let’s start with a 2 x 2 design. Our design matrix, once coded us-
ing sigma-restricted parameterization, would look like this:

A B ABy

ab, [ 1 1 1
X = ab, 1 -1 -1
ab [-1 1 -1
ab, [-1 -1 1

This matrix has one row per AB combination, but in actual use we'd have to repli-
cate the rows so that there was one row per subject. So if there were five subjects
in the a;b, condition, for example, there'd have to be five rows whose coefficients
were [1 -1 —1]. In this matrix the first column represents the main effect of A, as it
distinguishes those subjects who received treatment A; and those who received A,.
The second column represents the main effect of B, distinguishing B, from B,. The
third column is the AB interaction. Its elements are obtained by multiplying the cor-
responding elements of the first two columns. As always, we have as many columns
per effect as we have degrees of freedom for that effect (dfy = 1; dfg = 1; dfag = 1).
There are no ‘0’ entries because with only two levels of each variable, a subject is
either in thefirst or the last (-1) level.

Now consider a2 x 3 factoria (A, x Bz). We now have dfy = 1, dfg = 2, and dfsg =
2. So for the full model, we obtain the following matrix (again, we'd need to ensure
that we had one row per subject in the ‘real thing’):

A B B, ABy ABy
ab [1 1 0 1 0
ab, | 1 0 1 0 1

X=ab | 1 -1-1-1-1

ab -1 1 0 -1 O
ab, -1 0 1 0 -1
ab |-1 -1 -1 1 1

This simply applies the principles outlined above for the A, By, and B, columns; the
AB;; column is the product of the A; column and the B, column, while the AB,, col-
umn is the product of A; and B,.

Running an ANOVA like this gives us an overall R%. Since we know that SSiegression
= SSode = SSy X R = SS + S5 + SSpp, aNd SSrescua = SSrrer = SSy(1 — RY), we
can calculate our SSyoqe @Nd SSeror, We know our dfige (= dfa + dfs + dfag) and dfy.
ror» @nd therefore we can calculate an F test for the whole model (= M Syoge/ M Seror)-
However, this doesn’t tell us what proportion of the effect is attributable to A, B, or
AB. To partition the variance, we must recalculate the regression for a number of
reduced models. We might call the sum of squares for the full model that we' ve just
looked at SSiegresson-apap- | We dropped the interaction columns (AB;; and AByy),
we'd be deleting the predictors containing information about the interaction but
we'd retain the predictors containing information about « and 8; we'd call the re-
sulting sum of squares SSegression— - | We only used the A;, ABy;, and AB;, columns,
our model would only account for a and of; we'd obtain SS;egresion—a,q- I We only
used the B4, B,, AB; and AB;, columns, our model would only account for g and af;
we'd obtain SS; ey ession—g,45- ONCE WE' Ve calculated these, we can say that

SSpg = Ssregronaﬁﬂ/f - SSregron o
SS, = Ssregron wpaf SSregron b
SSg = SSregron apaf SSregron wap

For example, if the interaction term accounts for any of the variance in Y, then re-
moving the interaction term should lead to a decrease in the variation in Y account-
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able for; that decrease is equal to the variation attributable to the interaction. And so
on for the other terms. Note that if the predictors are in some way intercorrelated,
these sums of squares may not add up to SS5 (See section above on disproportion-
ate cell means with a Venn diagram, p. 70); that's fine (Howell, 1997, p. 583-5).
This method is the one that assigns SS, = areat, SSz = area X, SSyg = area zin the
Venn diagram above (see p. 70—), which is often what you want (Myers & Well,
1995, p.155).

Finally, to test these effects (to obtain F statistics for the effects of A, B, and AB),
we need to know how to compare one model to another. And this is very simple
(Myers & Well, 1995, p. 441 and 512-4; Howell, 1997, p.578). We can use any of
the following equivalent statements. If we have a Full and a Reduced model (with f
and r predictors respectively),

F _ (SSerror(R) - SSerror(F) )+ (dferror(R) - dferror(F) )
(dferror(R)_dfaror(F))'dferror(F) -

SSerror(F) - dferror(F)

F _ (Ssmodd(F) _Ssmodel(R) )+ (dfmodel(F) - dfmodel(R) )
(dfmodd(F)_dfmodd(R) )’dferror(F) -

SSerror(F) - dferror(F)

k)
f-r,N-f-1 (f—r)(l—R?)

The second formulation is perhaps the clearest from the point of view of ANOVA,;
the third is the most useful when you have a multiple regression coefficient R? for
each model. So to test the effect of A, we calculate the full model to obtain SSeegres
don-apap @ reduced model to obtain SSegessonpqs and test the difference between
them as above. But this simplifies abit — for example, take the effect of A:

SS, = Ssregronavﬁv,w - SSregron b

= SSregron(full) - SSregron(reduced)

3 (Ssmodel(F) _SSmodeI(R))+(dfmode|(F) - dfmodel(R))

F(dfmodd(F)_dfmodd(R) )’dferror(F) - SSerror(F) N dferror(F)
F S5, +df,
df g Hferorm sS = df
error(F) = “'error(F)
— M SA
M Serror(F)

6.7.5 An overview of GLM designs

We've seen that a one-way ANOV A uses this design matrix:

XO Xl X2
11 0

x=
A, |10 1
A |1 -1 1

This form of the matrix keeps the first ‘grand mean’ column (Xp) but uses sigma-
restricted coding for the A factor. As usual, the duplication of rows necessary to get
‘one datum, one row’, is not shown — if there were one subject (S1) in condition
A4, two subjects (S2, S3) in condition A,, and one subject ($4) in condition Az that
would make the final matrix look like this:
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XO Xl X2

Ag [1 1 0
X=FAs (1 0 1
As |1 0 1
Ag |1 -1 -1

If we used the overparameterized model to represent A, the matrix issimpler. Thisis
the reduced form (ignoring the fact that we'll eventually need one row per subject):

1100
X:A21010
A [1001

A two-way ANOVA with no interaction terms might look like this (left-hand ver-
sion in sigma-parameterized form; right-hand version in overparameterized version):

AB 1 1 1 AB 11010
X=AB, [1 1 -1/orx=AB, [1 100 1
AB |1 -1 1 AB (10110
AB, |1 -1 -1 AB, 1010 1

A two-way ANOVA with the usual interaction term looks like this, with an X3
column (the interaction term) that is the product of the X; (A) and X; (B) columns:

Xo X1 Xz X3

AB [1 1 1 1 AB, [11 0101000
X=AB, |1 1 -1 -1 oorx=AB, |11 0010100
AB 1 -1 1 -1 AB |101100010
AB, |1 -1 -1 1 AB, 101010001

In the overparameterized form, there's a grand mean column, then two columns for
the two levels of A, then two columns for the two levels of B, then four columns for
the possible values of the AB interaction.

In a fractional factorial design, columns are omitted from a full factorial design.
We saw an example above, in which the interaction was omitted from a 2 x 2 facto-
rial design. Similarly, you might chooseto runa?2 x 2 x 2 ANOVA but to ignore the
3-way interaction. The appropriate matrix is shown below (overparameterized ver-
sion); it has 1 grand mean column, 2 columns for A, 2 columns for B, 2 columns for
C, 4 columnsfor AB, 4 columns for AC, and 4 columns for BC.

ABC
ABC,
AB,C,
X = ABC,
ABC
AB,C,
AB,Cy
A:B,C,

P P PP PR PR
OO0 o0 O0ORrR kL PR
P PP P OOOO
OO0 R PR OOPR R
P R OORPROOo
OFr OFr OFPFr OP
P OPFP OPFP OFr O
O o0 o0oooopRrr
OO0 ookr kL oo
OO0 r PR oooo
P PO OOOOoOOo
OO0 ooor or
OO0 ookr opr o
OFr OFr OO0 O O
P OPFP OO OO O
OO0 or oo or
OO0 kr oo opr o
OFr OO0 OFPr oo
P OO OoOPr oo o

In a nested design, variability due to one factor is ‘nested’ within variability due to
another factor. For example, if one were to administer four different tests to four
school classes (i.e. a between-groups factor with four levels), and two of those four
classes arein school A, whereas the other two classes are in school B, then the levels
of the first factor (four different tests) would be nested in the second factor (two dif-
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ferent schools). In the design, nested variables never appear as main effects. For ex-
ample, if we have afactor A (3 levels) and afactor B (2 levels) nested within A, our
overparameterized matrix has one grand mean column, 3 columns for A, and 6 col-
umns for the effect of B nested within A ['B/A’ or ‘B(A)].

AB [11 00100000
AB, |11 00010000
X=AB (1010001000
AB, (1010000100
AB (1001000010
AB, 100100000 1]

Overparameterized models are always used to represent nested designs, as the
sigma-restricted coding method has difficulty dealing with the design (see
www.statsoft.nl /textbook/ stglm.html).

A simple regression design, with a single continuous predictor variable, is easy to
code. If there were three Y data points (dependent variable) and the corresponding
values of the predictor variable X were 7, 4, and 9, then the design matrix for the re-
gression Y = by + by X would be:
X
X : |:

A simple quadratic regression such as Y = by + byX? would be coded simply by
squaring the relevant values:

B R RS
© N
el

Xy X
1 49
1 16
1 81

X =

Multipleregressions, such asY = by + b;P + b,Q + bR, are coded just as ssimple re-
gressions. In a factorial regression design, combinations (products) of the predic-
tors are included in the design. If the predictors are P and Q, then the full factoria
design would include P, Q, and their interaction (P by Q), represented by the prod-
uct of P and Q scores for each case. So the equation would be Y = by + b;P + b,Q +
b;PQ. Factorial regression designs can also be fractional, in which you omit some
of the higher-order effects from the design. An example would be a design with
three predictors that omitted the three-way interaction: Y = by + byP + b,Q + bsR +
bsPQ + bsPR + bsQR. Polynomial regressions contain main and higher-order ef-
fects for the predictors but do not include interactions. For example, the second-
degree polynomial design for three predictors would include main (first-order) ef-
fects, quadratic (second-order) effects, but not interactions: Y = by + b,P + b,P? +
bsQ + bsQ? + bsR + bgR?. There are many other possible designs.

Analysis of covariance refers to a design containing both categorical predictors
(factors) and continuous predictors (covariates). Traditionally, however, the term has
referred specifically to designs in which the first-order effects (only) of one or more
continuous predictors are taken into account when assessing the effects of one or
more factors. For example, suppose a researcher wants to assess the influence of a
factor A with 3 levels on some outcome, and measurements on a continuous predic-
tor C, known to covary with the outcome, are available. If the data are:



C_ group

7 A

4 A

o0l | A

3| | A

61 | A

18] [As

then the design matrix would be

Xo Xl X2 X3 Xo Xl X2 X3 X4
17 1 0] (17 1 0 O]
14 1 O 14100
X=/19 0 1jorX=|19 010
13 0 1 13010
16 -1 -1 16 001
18 -1 -1 1 8 0 0 1]

In the left-hand (sigma-restricted) model, the equation is’Y = by + byX; + 0,X5 + baXs
and the coefficients b, and b; represent the effects of A, controlling for the effects of
C. The b, coefficient represents the effects of C controlling for A.

This traditional analysis is inappropriate when the categorical and continuous pre-
dictors interact in influencing the dependent variable. The appropriate design is the
separate slope design, which includes the factor x covariate interaction. For the
situation above, the overparameterized matrix that includes the main effect of A and
the A x C interaction would be;

= B O O O O
o OO O ©O O O

[ N = Y RGN
O OO0 O FRr R
O o r r oo
O o0 oo i~
O 0O w oW o o

Separate slope designs omit the main effects of C. Overparameterized matrices are
always used for separate slope designs, since the sigma-restricted model runs into
problems (www.statsoft.nl/textbook/stglm.html). The homogeneity of slopes de-
sign can be used to test whether the covariate and factor interact, and thus whether
the traditional ANCOVA or the separate slope design is better. This one does in-
clude the main effect of C:

x

1
N T
0 o wWw O M N
O 0O 0O R R
O O Fr L OO
P P OO OO
O 0O o0 o~
O O w oV o o
w o0 O O o

‘Mixed” ANOVA and ANCOVA models are those that contain random effects,
rather than fixed effects, for one or more factors. The difference is only in how ef-
fects are tested. When computers perform tests for designs that include random
(rather than fixed) factors, they have to work out the appropriate error term for every
effect in the model. In a fixed-effect design, between-subjects effects are always
tested using the mean squared residual as the error term. But in mixed-model de-
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signs, between-subjects effects are tested using relevant error terms based on the co-
variation of random sources of variation in the design. Computers do this with
something called the ‘denominator synthesis' approach of Satterthwaite (1946); de-
tails are at

www.statsoft.nl /textbook/ stglm.html [covers much GLM theory]
www.statsoft.nl /textbook/ stvarcom.html

Remember, a mean square qualifies as an error term for testing an effect if itsE(MS)
matches the E(MSge) in all respects except the null-hypothesis component
(Keppel, 1991, p. 568).

Within-subjects (repeated measures) designs can be analysed by coding ‘ Subject’
asaset of columns (Myers & Well, 1995, pp. 569-572). If there are n subjects, there
must be n—1 ‘S’ columns (sigma-restricted parameterization form of the matrix) or n
columns (overparameterized form); similarly, any interactions involving S can be
coded.

Within-subjects (repeated measures) designs can also be analysed by constructing
new dependent variables — for example, if subjects are tested at time 1 and time 2, a
new ‘difference between the two times variable can be constructed and analysed.
These techniques can be extended to multiple levels of a within-subjects factor and
multiple factors using special techniques based on multivariate analysis (see below),
or by considering ‘ Subjects’ as a (random) factor in its own right and working out
the relationship between the other factors. For example, a very common example is
a design with one between-subjects factor and one within-subjects factor, written A
x (U x S); variation due to subjects is nested within variation due to A (or, for short-
hand, S is nested within A), because each subject is only tested at one level of the
between-subjects factor. The disadvantage with the latter technique is that it does
not take account of the potentially major problem of correlation between differences
between levels of a within-subjects factor, known as the sphericity problem (see
below and p. 25—).

6.7.6 A hint at multivariate analysis; MANOVA

The Y matrix, so far an n x 1 vector of n observations of asingle Y variable, can be
replaced by an n x m matrix of n observations of mdifferent Y variables. In this case,
the b vector similarly has to be replaced by a matrix of coefficients. The advantage
is that you can then analyse linear combinations of several dependent variables,
which may themselves be correlated; one application is to measure the strength of
the relationships between predictor and dependent variables independent of the de-
pendent variable interrelationships. For example, if we give students one of two
textbooks and measure their performance on maths and physics (two dependent
variables), we might want to ask whether the textbooks affected performance, and if
so, whether a textbook improved maths, physics, or both — yet students' perform-
ance on maths and physics tests may be related. Some of the theory is discussed at

www.statsoft.nl /textbook/ stglm.html [general GLM theory]
www.statsoft.nl /textbook/ stanman.html#multivariate

A multivariate approach can also be used for within-subjects (repeated measures)
designs. The bonus is that the sphericity problem (qg.v.) is bypassed altogether. Es-
sentially, the problem of sphericity relates to the fact that the comparisons involved
in testing within-subjects factors with >2 levels may or may not be independent of
each other, and if they’re not, then the ANOV A results will be wrong unless we ac-
count for this. For example, if subjects learn some material and are tested at times 1,
2, and 3, then subjects who learn most between time 1 and time 2 (contrast: time 2 —
time 1) may learn least between time 2 and time 3 (contrast: time 3 — time 2), so the
two contrasts are not independent. ANOV A assumes that all contrasts are independ-
ent (orthogonal). It’s easy to see what that meansif you had a factor A: ‘male or not’
and afactor B: ‘female or not’ — if you entered both factors into an ANOVA, both
factors would account for equal variance (since they ask the same question — are
not orthogonal) and if you partitioned out this variance you'd get the wrong answer
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(since you'd be partitioning out the same thing twice). This is the problem that
within-subjects contrasts can run into. Correction procedures such as the Green-
house-Geisser and Huynh—Feldt procedure attempt to deal with this. But a multi-
variate analysis automatically deals with correlations between dependent variables,
so you don’t have to worry about the problem. Sometimes MANOVA can't be used
because it requires a bit more data. Sometimes repeated-measured ANOVA and
MANOVA give different answers — but this means that the differences between
levels of the repeated-measures factors (e.g. time 1 v. time 2; time 2 v. time 3) are
correlated across subjects in some way, and that may itself be of interest.

6.7.7 Linear contrasts with a GLM

GLMs make it easy to specify linear combinations of effects to test as contrasts. For
example, if you had measured subjects on each of the 7 days of the week, and you
wanted to ask whether the dependent variable was different on weekdays and week-
ends, you could use the contrast

—lMon—lTue—lWed—lThu—lFri +18at+18un
5 5 5 5 5 2 2

This contrast would be zero if the mean weekend score and the mean weekday score
were the same, so it’s an appropriate contrast. If your design matrix looked like this:

Mon [1 100000 0O
Tue (1010000 0
Wed (10010000

X=Thu [1 0001000
Fi 10000100
St (10000010
Sn 1000000 1

then a suitable contrast matrix might look like this:

This would be equally appropriate:
L=[0 2 2 2 2 2 -5 —5]

It works like this: you solve the usual GLM, Y = Xb+e, to find the parameter es-
timates b. Then you calculate L =Lb to estimate the value of your contrast. You

can then test it for significance; its sum of squares is given by the usua
2

SScontrast =
>wW?/n,
i J/ ]

sponding group sizes, and M Seontras = SScontrag 1S COMpared to M Sy, FOr details, see

where w; are the weights in the L matrix and n; are the corre-

www.statsoft.nl/textbook/ stglm.html#testing
6.7.8. GLMsin SPSS

If you run an ANOVA in SPSS, how can you see the design matrix? SPSS doesn’t
show you this directly, but it will show you parameter estimates — that is, the b
matrix. And it 1abels each row of the b matrix with a description of the relevant col-
umn of the corresponding design matrix (X). To obtain this, either use the

/PRINT = PARAMETER
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option or, from the menus, Options — Parameter estimates. You'll get something
likethis:

Parameter Estimates

Dependent Variahle: DEPVAR

95% Confidence Interval

Parameter B Std. Error t Sig Lower Bound | Upper Bound
Intercept 81.304 3283 24768 ooo 74.433 8B1748
c 1.342 434 3.092 (il 434 2.250
[A=1.00] -77.483 1.841 -42.095 .ooo -81.336 -73.631
[A=2.00] 02 . . .
[B=1.00] -84 667 1.063 -80.611 ooo -87.891 -83.442
[B=2.00] o2

[A=1.00] * [B=1.00] 83.390 868 96.058 .ooo 81.534 85166
[A=1.00] * [B=2.00] 0 . .
[A=2.00] * [B=1.00] o2

[A=2.00] * [B=2.00] 03

a. This parameter is setto zZero because itis redundant,

The design matrix is specified by the /pEsten command — try clicking Paste in-
stead of OK when youre about to run any ANOVA and you will see the /pEsicN
command it was going to use. Similarly, if you add /PRINT-TEST (LMATRIX), YOU See
acontrast for every termin the design matrix, which shows you the columns present
in the design matrix. For example, with atwo-way ANOVA, A, X B,, you get this:

Intercept A B A'D

Caontrast Contrast Contrast Contrast
Parameter L1 Farameter L2 Parameter L4 Pararneter LG
Intercept 1.000 Intercept oon Intercept .noo Intercept .00
[#=1.00] A00 [A=1.00] 1.000 [A=1.000 .ooo [%=1.00] .ooo
[A=2.00] A00 [A=2.00] -1.000 [A=2.00] i} [#=2.00] oo
[B=1.000 500 [B=1.00] .ooo [B=1.00] 1.000 [B=1.00] .ooa
[B=2.00] 500 [B=2.00] .ooo [B=2.00] -1.000 [B=2.00] oo
[A=1.00] * [B=1.00] 2580 [A=1.00]* [B=1.00] 500 [A=1.00] = [B=1.00] 500 [#=1.00]=[B=1.00] 1.000
[A=1.00] * [B=2.00] 2580 [A=1.00] * [B=2.00] 500 [A=1.00] * [B=2.00] -.500 [%=1.00]* [B=2.00] -1.000
[A=2.00] * [B=1.00] 250 [A=2.00] * [B=1.00] -A00 [A=2.00] * [B=1.00] 500 [%=2.00]* [B=1.00] -1.000
[4=2.00] * [B=2.00] 250 [A=2.00] * [B=2.00] -A00 [A=2.00] * [B=2.00] -.500 [A=2.00]* [B=2.00] 1.000

The default display of this matrix is the
transpose of the corresponding L matrix,
Based on Type Il Sums of Squares

Rather than simply using the null hypothesis Lb =0, SPSS can also test custom hy-
potheses with non-zero expected values for the contrast: Lb =k, or for multiple
contrasts simultaneously, with more than one row for the L matrix, Lb =K . This
can be specified with the /LvaTrIx and /xmaTrIx subcommands (SPSS, 2001, p.
478-481).

For an Az x B3 ANOVA, the default contrasts look like this:

Intercept A B A*B
Cantrast Caontrast Cantrast Cantrast

Parameter L1 L2 L3 LS LGB La L9 L11 L12

Intercept 1.000 .ooo .ooo .ooo .ooo .ooo .ooo ooo aoo
[A=1.00] 333 1.000 .ooo .ooo .ooo .oon oo ooo aoo
[A=2.00] 333 .ooo 1.000 .ooo .ooo .oon oo ooo aoo
[A=3.000 333 -1.000 -1.000 ooo ooo oon ooo ooo ono
[B=1.00] 333 .ooo .ooo 1.000 .ooo .oon oo ooo aoo
[B=2.00] 333 ooo ooo ooo 1.000 oon ooo ooo ono
[B=3.00] 333 ooo ooo -1.000 -1.000 oon ooo ooo ono
[A=1.000* [B=1.00] m 333 .ooo 333 .ooo 1.000 oo ooo aoo
[A=1.00]* [B=2.00] 111 333 ooo ooo 333 oon 1.000 ooo ono
[A=1.00]* [B=2.00] (N 333 .ooo -.333 -333 -1.000 -1.000 ooo aon
[A=2.00]~ [B=1.00] 1 .ooo 333 33 .ooo .oon oo 1.000 aoo
[A=2.00]* [B=2.00] 1 (il 333 aoog 333 (ili] ooo ooo 1.000
[A=2.00]* [B=2.00] (N .ooo 333 -.333 -.333 .oon oo -1.000 -1.000
[A=3.00]~ [B=1.00] 1 -.333 -.333 333 .ooo -1.000 oo -1.000 aoo
[A=3.00]* [B=2.00] (RN -.333 -.333 .ooo 333 .oon -1.000 ooo -1.000
[A=3.00] * [B=3.00] m -.333 -.333 -.333 -.333 1.000 1.000 1.000 1.000

The default display of this matrix is the
transpose ofthe corresponding L matrix,
Based on Type lIl Sums of Sguares.

The contrasts shown above — the default contrasts that examine the main effects of
A and B and the AB interaction — could be specified by hand like this:

GLM DEPVAR BY A B

/LMATRIX = "Intercept"
all 1
1/3 1/3 1/3
1/3 1/3 1/3
1/9 1/9 1/9
1/9 1/9 1/9

1/9 1/9 1/9
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/LMATRIX = "A"
a 1 0 -1
b 0 0 0
a*b 1/3 1/3 1/3
0 0 0
-1/3 -1/3 -1/3;
a o0 1 -1
b 0 0 0
a*b 0 0 0
1/3 1/3 1/3
-1/3 -1/3 -1/3
/LMATRIX = "B"
a o 0 0
b 1 0 -1
a*b 1/3 0 -1/3
1/3 0 -1/3
1/3 0 -1/3;
a o0 0 0
b 0 1 -1
a*b 0 1/3 -1/3
0 1/3 -1/3
0 1/3 -1/3
/LMATRIX = "AxB"
a o0 0 0
b 0 0 0
a*b 1 0 -1
0 0 0
-1 0 1;
a o 0 0
b 0 0 0
a*b 0 1 -1
0 0 0
0 -1 1;
a o 0 0
b 0 0 0
a*b 0 0 0
1 0 -1
-1 0 1;
a o0 0 0
b 0 0 0
0 0 0
0 1 1
0 1 1

/DESIGN = A, B, A*B.

(You have to use 1/3 rather than o.333 to avoid rounding errors; if the coefficients
don’'t add up to 1 for each contrast matrix you won’'t get an answer.) Having seen
how the general technique works, we can test advanced contrasts:

/LMATRIX = "Bl vs B2 at Al"
B 1 -1 0
A*B 1 -1 0
0 0 0
0 0 0

Thiswould be more powerful than just analysing the A; data and applying aB; v. B,
contrast — the M S.nras WoUId be the same, but the contrast specified above uses the
overall (pooled) M Sy, making it more powerful (more error df).

/LMATRIX = "Bl vs (B2+B3)"
A 0 0 0
B 1 -1/2 -1/2
A*B 1/3 -1/6 -1/6
1/3 -1/6 -1/6
1/3 -1/6 -1/6

Finally, a really complex one. Suppose B; is a control condition and B, and B; are
two different selective serotonin reuptake inhibitor drugs. Therefore, (B;) versus (B,
and B3) might represent an ‘ SSRI treatment effect’ (call it T) that we're interested in.
Suppose that A; and A, are depressives and schizophrenics. If we want to compare
the SSRI effect between depressives (Ta;) and schizophrenics (Ta,), we could follow
thislogic:
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T - Heoa1t Mz a1
A1 = Heial 5

T = Hpoa2 T U3 A2
A2 T HMBipo—— 5

2
Ho:Ta1=Taz
Ho:Ta1—Ta =0
. Hpoart He3al Hpopo T Uz a2
Ho g1 a1 _f_:uBl,Az +f =0

Having calculated our null hypothesis, we can specify the contrast:

/LMATRIX = " (Bl vs (B2+B3)) - at Al versus A2"
A*B 1 -1/2 -1/2
-1 1/2 1/2
0 0 0

Hope I’ ve got that right; it seems to work.



6.8 Effect size
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Whether a contribution is significant or not does not tell you whether that significant
contribution is large. If you have high power (large n), you may be able to measure
significant small effects. And if you have lower power (small n), you may ‘miss
(fail to declare as significant) large effects. To ask about effect size is to ask not
just whether the effect of a predictor variableis statistically significant, but how
big (important) its effect is.

In general, when we are predicting a dependent variable Y by one or more predictor
variables, be they continuous (ANCOVA, multiple regression) or discrete (ANOVA
factors), we can ask to what extent a given term (main effect, interaction, etc.) con-
tributes to the prediction of the dependent variable. We've already seen that this can
be complicated, especialy if the predictors are themselves correlated — effect size
is afairly complex topic (Winer, 1971, pp. 405-415; Keppel, 1991, pp. 64-68, 221-
224, 437-440; Myers & Well, 1995, pp. 111-113, 252-256, 504-509; Howell, 1997,
pp. 330-334, 426-429, 544-546).

We'll start by examining effect size in the context of multiple regression (predicting
Y from Xy, X5, and so on), because it's the simplest conceptually. In general, effect
size can refer to the size of the change in Y that follows a certain change in a
predictor (regression slope) or the proportion of variation in Y explicable by a
predictor (equivalent to r?in simple linear regression).

6.8.1. Effect sizein the language of multiple regression
Areminder of what the ‘significance’ of a predictor means

Assuming you use the usua (SPSS Type IIl) way of partitioning sums of squares
with correlated predictors, the significance test of each predictor reflects whether
that predictor contributesto the prediction over and above all the other predic-
torsin the model (see aso sections on correlated predictors earlier: p. 70— and p.
86—). Thisis not effect size.

Interpreting the effects of individual predictors: the regression sope, b

The computerized results will give us individual slope parameters for each of the ef-
fectsin our model (in SPSS, tick Options — Parameter estimates). Remember that
amultiple regression equation looks like this:

YA:bO +blxl+b2X2 +...
y=Xb+e

The parameters are the values of b. The first, by, is the intercept (grand mean). The
others reflect the effects of al the other predictors. However, there are problems of
interpretation of the individual slope parameters by (Myers & Well, 1995, p. 522;
Howell, 1997, pp. 510-532 and 544-546). It is tempting to think that if we were to
change X; by one unit, Y would change by b; units — this would be true of simple
linear regression (with one predictor). However, a regression coefficient by does not
reflect the total effect of X; on Y. Rether, it reflects the direct effect of X; on Y — the
rate of change of Y with X; holding all of the other variables in the equation con-
stant. If the various predictors (X3, X,, ...) are mutualy correlated (known as
collinearity or multicollinearity), it may often not make a great deal of sense to ask
this question — for example, if we were predicting car crash fatalities by drivers
annual mileage and drivers' annual fuel consumption, it's not clear what it would
mean to change annua mileage while holding fuel consumption constant. When we
ask about the consequences of changing X, we must be concerned not only with the
direct effect but also with the indirect effects — the effects on Y that occur because
of changes in the other variables. Given a valid causal model, path analysis can be
used to calculate the total effect (direct + indirect effects) of changing a variable.
However, if the model is incomplete or invalid, we would have to establish the ef-



fects of changing X; experimentally, by manipulating it without confounding it with
the other variables, and observing the results.

Sandardized regression slope, S (= 1)

The standardized regression slope, £, is simply the b; that you would obtain if both
the dependent variable Y and the predictor X; were standardized — that is, trans-
formed so that they have a mean of 0 and a standard deviation of 1 (Howell, 1997,
pp. 244, 517-8, 544-6). If b = 0.75, then a one unit increase in X would be reflected
inan 0.75 unit increasein Y. If 5 = 0.75, then a one standard deviation increase in X
would be reflected in an 0.75 standard deviation increase in Y. It's easy to calculate
p. 1f by and 5 are the regression slope and standard deviation of a predictor X;, then

bjs;
/Bj z?

Bear in mind that slopes are related to r: for simple linear regression,

and so b = r when both variables are standardized (Howell, 1997, p. 242), and f =
at all times.

However, with multiple predictors, the problem with g is just the same as for by: it
reflects the change in Y associated with a change in X, holding all other predictors
constant, and if the predictors are correlated this may not make much sense.

Overall R*and RZ; : how good is the whole model?

The computerized results of an ANOVA, ANCOVA, or other GLM will give an
overall R?, which reflects the proportion of total Y variance predicted by al the pre-
dictors together, i.e. SSegesion/ SSota- (Alternatively, we could say that R is the cor-
relation between the dependent variable and the best linear combination of the pre-

dictors)) R? can also be adjusted (downwards) to give Rgdj , a better estimate of the

corresponding population parameter (Myers & Well, 1995, p. 508-509; Howell,
1997, p. 521), and SPSS will do that automatically. If there are N observations and p
continuous predictors:

2 _1_(1- R? &

If you are using predictors with >1 df per predictor (e.g. factors with >2 levels), you
need a more general form of this equation, which | believeis

Razd] =1— (1_ RZ)( dftotal J
dfefror

Assessing the importance of individual predictors: fszemipamal —agood one

Let’s move on to a better measure (Myers & Well, 1995, pp. 505-508; Howell,
1997, pp. 528-531, 544-546). When we predict Y from p predictor variables,

R?.]..Z...p (or simply R?) is the proportion of variability in Y accounted for by the re-

gression on all p predictors. If the p predictors are not mutually correlated (Myers &
Well, 1995, p. 505), SSegession Can be partitioned into nonoverlapping components
from each of the predictors:
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SSregron =SS/, +SSy,+...+ SSY.p
2 2 2
=1v1SSy +1y,SSy +...+1y ,SSy

where SS, ; is the proportion of variability of Y accounted for by the predictor X;,
and 7 j isthe correlation between X and Y. Since

2
SSregron = R(.l,z...pSSY
it follows that for uncorrelated predictors,

2 2 2 2
Rii2 p=haitRNa+t...Iy,

=31
]
If the predictors are correlated, we must use this (Myers & Well, 1995, p. 506):

2 -~
2.0
2 _
RY.1,2...D - 6_
Y

where by is the regression coefficient of X; in the multiple regression equation and
6; and & arethe standard deviations of X; and Y, respectively. Theincreasein R*

when X, isadded to a regression equation that already contains X; is rf(zm , the

squar e of the semipartial correlation coefficient (Myers & Well, 1995, p. 486 and
507). Here's a visua interpretation, in which the area of each circle represents the

total variability of agiven variable:

Uncorrelated predictors Correlated predictors
2
R{.l =a+b 2
I’Y. i\ C
RZ,=b+c @

2
I\ =a

You could also say that the semipartial correlation ry () is the correlation of Y with
that part of X, that is independent of X; (Howell, 1997, p. 528). In genera,
rY2.(p+1|ZI.,2...p) is the increase in R? that follows from adding X, to a regression
equation that already includes Xy, Xy, ... X,. Thét is,

2 2 2
Rii2. p+1=Re12. p + W (psn2.. p)
2 2 2
N (p+m2..p) = Rz, pra—Rviz. p

This would seem to be a useful measure. Howell (1997, p. 544-6) agrees, stating that
‘when the main goal is prediction rather than explanation, this is probably the best
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measure of “importance”.’ If the computer package doesn't give it directly (and
SPSS doesn't), it can easily be calculated (Howell, 1997, p. 546):

5 _R@- Ri12.p)
Y (ij1,2... everything excepti... p) T N-p-1

where p is the total number of predictors, rYz_(i I1,2...everything excepti...p) 1S the squared
semipartial correlation for predictor i, F, isthe F test for predictor i (use F = t? if
your stats package reports t instead), R’?.l.Z...p is the overall R? (with predictor i in-

cluded), and N is the total number of observations. Note that this means that the F
gtatisticsin an ANOV A are in the same order as the the squared semipartial correla-
tion coefficients (within an ANOVA, you could say that ‘bigger F = more impor-
tant’). If you're using factors as predictors (i.e. predictors with >1 df per predictor), |
rather suspect that Howell’ s formula should be rewritten like this:

2
2 _ Fi (1_ RY.LZ..p)
rY.(i[l,2...e\/erything excepti...p) — df
error

But if you're having trouble working out a formula, you can always fall back to the
position of running the ANOV A with and without a particular term, and calculating
the difference between the two overall R? values.

Partial and semipartial correlations

It's easy to be confused by the difference between partial and semipartial correla-
tions. We've just seen what the semipartial correlation is (Howell, 1997, pp. 526-
531). Let’s go back to the Venn diagram:

vev

The squared semipartial correlation coefficient rY2_(2|1) is the proportion of the vari-
ability in Y explained by X, over and above what's explained by X;. The squared
partial correlation coefficient rfzu is the proportion of the variability in' Y explained

by X, relative to that not explained by X;. In our Venn diagram, the two look like
this:

Overall prediction of models  Squared semipartia Squared partial

2
=a+b
R;.l 2 (2 = —
R2=b+c I'y.m =C YT i
2 _ 2 _
Rii2=a+b+c 'v.ap) =@ My = _ad
2 ' a+
1- R{.l,z =d

Suppose that R?_z =0.4, the squared semipartia rﬁ(zm = 0.2 and the squared partial

rY2_2|1 =0.3. That would mean that X, explains 40% of the variability in Y if it's the

only predictor, that X, explains 20% of the variability in Y once X; has been taken
into account (semipartial), and that X, explains 30% of the variability in Y that X;
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failed to explain (partial). That would reflect this situation (areas denote variability;
figures are proportions of the total variability of Y; sorry if it’s not quite to scale):

T

Another definition of partial correlation

If r, is the correlation between X and Y, then r,y,, the partial correlation between X
and Y with the effects of Z partialed out, is the correlation between X|Z and Y]|Z,

where X |Z=X - X is the residual that results when X is regressed on Z, and

Y|Z =Y -Y isthe residua that results when Y is regressed on Z (Myers & Well,

1995, p. 483). It's possible to obtain r,y, from the simple correlations between each
of the variables:

o = Ty — Pxel'yz
Xylz
Ja-r2)a-r2)

For example, suppose we look at 48 US states and measure population, motor vehi-
cle deaths, and whether or not the state has enacted seat belt legidation — the last
being a dichotomous variable, but that's OK (Myers & Well, 1995, p. 483). There's
a positive correlation between deaths and belt legidation (+0.309), which might
seem worrying. HOWEVEr, I geshs population = +0.928 and I peits population = +0.345 — larger
states have more deaths, and larger states are more likely to have seat belt legida
tion. The partial correlation ryens peitsipopuiaion = —0.032, indicating a small but nega-
tive relationship between seat belt laws and motor vehicle deaths once the effects of
population have been partialled out.

Another definition of semipartial correlation

The semipartial correlation coefficient ryy, is the correlation between Y and X|Z,
where X |Z = X — X istheresidual that results when X is regressed on Z. It too can
be calculated from the simple regression coefficients:

My —xefyz

r =
y(x2) \/72
(1_ rxz)

6.8.2. Effect size in the language of ANOVA

The effect size in the context of ANOVA is the same thing as the effect size in mul-
tiple regression (since both are simply instances of a GLM), but people tend to use
different terminology. A helpful discussion of some different measures of effect size
is given at web.uccs.edu/Ibecker/ SPSS/glm_effectsize.htm.

Difference between level means

This is smple. If you have a factor (e.g. Sex: Male/Female) and you establish
through an ANOV A that its effect is significant, you have an instant measure of its
effect: the difference between zinae aNd z4emae- Y OU Can extend this approach to mul-
tiple factors and to interactions. For example, for the data shown below, we can state
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the effect sizes very simply. Overall mean: The overall mean (‘being a male or fe-
male 10- or 10-year-old’) is 137 cm. Main effects: Maleness contributes +3.5 cm
and femaleness contributes —3.5 cm (or, maleness contributes +7 cm compared to
femaleness). Being a 10-year-old contributes —33.5 cm; being a 20-year-old contrib-
utes +33.5 cm (or, being a 20-year-old contributes +67 cm relative to being a 10-
year-old). Interactions:. if the overall mean contributes 137 cm, being a male con-
tributes +3.5 cm, and being a 20-year-old contributes +33.5 cm, we'd expect 20-
year-old males to be 174 cm, but in fact they’re 177 cm, so the interaction term (be-
ing a male 20-year-old) contributes an extra +3 cm on top of the main effects. And
so on.

Height Male Female mean
10-year-old 104 cm 103cm 103.5cm
20-year-old 177 cm 164 cm 170.5cm
mean 1405cm  1335cm | 137 cm
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Effect size measures related to the difference between means — perhaps best to skip this bit!

There are lots of these, most designed to facilitate calculation of power. For a situa-
tion with two groups with the same standard deviation, we can measure the differ-
ence between means u, — 1 . We can ‘standardize’ that by dividing by the standard

deviation to produce d, often called the ‘ effect size':

d=t2"t
c

This number d can be combined with knowledge of the sample size n to calculate

S=dvn , which in turn can be used to calculate power (Myers & Well, 1995, pp.
113-116; Howell, 1997, p. 216-226). Cohen (1988) more or less arbitrarily called d
= 0.2 asmall effect (the means differ by 0.2 of a standard deviation), 0.5 a medium
effect, and 0.8 alarge effect. Similar principles can be applied to ANOVA (Howell,
1997, p. 334-340), but the notation is a bit different. If there are k levels for a factor,
the standardized measure of effect sizeis

This can then be combined with knowledge of the sample size to calculate

o= ¢’\/ﬁ , which in turn can be used to calculate power. This can be extended to

factorial designs (Myers & Well, 1995, pp. 147-149). And just as correlation slopes

b were related to r? in the language of regression, ¢’ (also written f) is related to #°
(see below) in the language of ANOV A (Winer et al., 1991, p. 124):

£2 n?

1-7

2

o and ¢ are also known as noncentrality parameters (Winer et al., 1991, pp. 126-
140; Howell, 1997, pp. 220, 334-5). This refers to the fact that if there is an effect (if
the null hypothesisis false), the distribution of F statistics isn’t the plain F distribu-
tion (as it would be if the null hypothesis were true), but a shifted (noncentral) F
distribution. The noncentrality parameters measure effect size by how much the dis-
tribution is shifted.

Assessing the importance of individual predictors: ;2

Eta-squared is given by
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1? represents the proportion of total variation accounted for by a factor; equivalently,
the proportion by which error is reduced when you use the factor to predict the de-
pendent variable (Howell, 1997, p. 332). Etaitsdlf, #, is called the correlation ratio
(Winer et al., 1991, p. 123), although #* is also sometimes called the correlation ra-
tio (Howell, 1997, p. 331).

If you only have one predictor, 72 = R2. If you have more than one predictor and
they're correlated, #* depends on how you calculate SSurey. ASSUMiNg you use the

usual (SPSS Type I11) method (see p. 70—), the SS for predictor X, in the diagram
below isareac, and SS, (SSy) isareaa+ b+ c+ d.

vev

So for our usual (SPSS Type |11) sums-of-squares method, the #° for X, is

2 _ SSefeat _ c .2
2 = =C=Ty 2
SSiw  a+b+c+d

s0 52 is the squared semipartial correlation coefficient, it seems to me. If you calcu-
late ;72 by hand in SPSS, remember that what we normally refer to as SSya,
> (y-V)?, islabelled ‘corrected total’ by SPSS. (Its ‘total’ is ¥ y? , which we're
not interested in.)

Assessing the importance of individual predictors: n,famal — not very helpful

One measure of the importance of individual predictors is the partial eta-squared
coefficient, which is something that SPSS gives you (tick Options — Estimates of
effect size). We've just seen what 5 is (above). The partial eta-squared is ‘an over-
estimate of the effect sizein an F test’ (SPSS, 2001, p. 475). Specificaly, it'sthis:

ne. = Offeffect X F
P O ot X F + Of oy
SSeffect

SSeffect + SSerror termfor that effect

The top formula is from SPSS (2001, p. 475) and the second from
web.uccs.edu/Ibecker/ SPSS/glm_effectsize.htm. 1I'm not sure if it's particularly
useful, especialy as the partia eta-squared terms sum to more than one

(XNt >1), which is pretty daft. In terms of our Venn diagram, the 7754 for X,
is:
_ Sstreatment _ C _ r2
= = =lhyop
Sstreatmen’[ + Ssefror C+ d

2
M partial ,
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vev

S0 ngama, is the squared partial correlation coefficient, it seemsto me. Therefore, I'll
ignoreit.

Another one: @?

When a factor A predicts a dependent variable Y, omega-squared (o?) for A is de-
fined as the proportion of the total variance in Y attributable to the effects of A

(Myers & Well, 1995, p. 113). In general, the estimated w?, written &, is

For afixed (not arandom) effect A, w? is estimated by

a")Z — SSA — de X MSerror
M Serror + SStotal

(Formula from web.uccs.edu/Ibecker/ SPSS/glm_effectsize.htm.) For random ef-

fects, such as in within-subjects (repeated measures) designs, the definition of &?
depends on the specific ANOVA model (Myers & Well, 1995, pp. 252-256; Howell,
1997, pp. 426-429), and sometimes it cannot be estimated exactly (Myers & Well,
1995, p. 254).

And another: the intraclass correlation p,

The intraclass correlation coefficient is a measure of association between the inde-
pendent and dependent variables for a random-effects model (Howell, 1997, p. 334)
(web.uccs.edu/Ibecker/SPSS/glm_effectsize.htm); for an effect A, it’s

— IV|SA - Mserror
MS, +df g XMSyor

P

The squared intraclass correlation, ,o,2 , isaversion of o for the random model.

Which one to use?

Although #? is perhaps the simplest, it does have a problem (Howell, 1997, pp. 333-
334). When it's applied to population data, it's correct; when applied to samples (as
we normally do), it's biased as a measure of the underlying population effect size.

So @? is generally preferred when we want an estimate of the effect size in the
population — the way it's calculated takes account of sample size appropriately (so

@* will always be smaller than ° or r]éama, ). On the other hand, SPSS doesn’t pro-
duce it, which is a bit of a shame, and it’s laborious to calculate by hand. So for a
quick idea, ;72 is perhaps easiest. This aso has an advantage over r]éama, inthat it's
additive (the #* values sum to 1, while the r]éama, values can sum to >1) and is
therefore perhaps easier to conceptualize and interpret.
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Part 7: specific designs

For designs 1-17, all factors other than ‘subject’ factors are assumed to be fixed. If
you wish to use other random factors, see Myers & Well (1995, p. 262) or just tell
SPSS that’s what you want and trust it to sort out the maths.

Design (BS = between-subjects, WS =
within-subj ects)

Description (in most eco-
nomical format; S = sub-

Between-subjects
factor(s) or co-

Within-subjects
factors(s) or co-

jects; ‘cov’ subscript = co- variate(s) variates)
variate)
1—One BSfactor AxS A -
Includes step-by-step instructions for
performing between-subjects analysis
in SPSS
2 —Two BSfactors AxBxS A, B -
3 —Three BSfactors AxBxCxS A,B,C -
4 — One WS factor Ux9 - u
5—Two WSfactors (UxV x9S - uVv
6 — Three WS factors (UxVxWxYS) - uv,w
7 —One BS and one WS factor Ax(UxY9 A u
Includes step-by-step instructions for
performing within-subjects (repeated
measures) analysisin SPSS
8 — Two BS factors and one WS factor AxBx(UxYS) A, B u
9 — One BS factor and two WS factors Ax(UxVxY) A uvVv
10 — Higher-order designsalong the same  Seetext See text See text
principles and summary of designs 1-9
11 — One BS covariate Ceov X S Ceov -
(linear regression)
12 — One BS covariate and one BSfactor  Cy, x AX S Ceovs A -
13— One BS covariate and two BSfactors C,,x AxB xS Ceonn A, B -
14 — Two or more BS covariates Ceov X Dgoy X ... X S Ceovs Deovs -+ -
(multiple regression)
15—-Two or more BS covariatesand one  e.g. Cooy X Doy X AX B X S Ceovs Deows A, B, -
or more BSfactors etc.
16 — One WS covariate (Ceov X S) - Ceov
17 — One WS covariate and one BSfactor A x (Cgy X S) A Ceov
18 — Hierarchical designs See text (complex) Seetext (complex)  Seetext (complex)
19 — Latin square designs See text (complex) Seetext (complex)  Seetext (complex)
20— Agricultural designs See text (complex) Seetext (complex) Seetext (complex)
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7.1 One between-subjects factor

Alternativenames e  One-way ANOVA
e Completely randomized design (CRD)

Example Subjects are assigned at random to drug treatments A1, A2, or A3 (completely randomized de-
sign; single factor with three levels) and their reaction time is measured on some task (depend-
ent variable). Does the drug treatment affect performance?

A researcher wishes to test the effectiveness of four fertilizers (A1, A2, A3, A4). He divides his
field into sixteen plots (equivalent to ‘subjects’ or ‘replications’) and randomly assigns fertilizer
Alto four replications, A2 to four replications, and so on.

Notes For two levels of the factor, thisis equivalent to an unpaired (independent sample) t test. Treat-
ments (levels of the factor) are assigned at random to subjects (replications). For full details, see
Howell (1997, chapter 11).

Model description  depvar=A xS
(S= subjects)

Model Yij =u+q; +€ij

where

e Y isthe dependent variable for subject j experiencing level i of the factor

e s istheoveral mean

e ¢ is the contribution from a particular level (level i) of the factor: o, = — ¢ and

Y a; =0. Thenull hypothesisisthat all values of ¢; are zero.
i

e g iseverything else (the ‘uniqueness’ of subject j in condition i, ‘error’, ‘individual varia-
tion, etc.): &; =Y, — ;. We assume ¢g; is normally distributed with mean 0 and variance
2
o

Sources of variance Analysis of variance discards constant terms (like 1) and examines the sources of variability
(variance). Writing thisin terms of sums of squares (SS),

SSotd = SSA + SSerror

where SS, is the total variability, SSi. IS the variability attributable to the factor, and SSqor
isthe ‘error’ variability (everything that’s left over). Alternatively, we could write

SSiota = SSa + SSy/a

because our total variability is made up of variability due to factor A, and variability due to in-
ter-subject differences within each level of A (‘Swithin A’, or ‘S/A’).

ANOVA table In all cases, the mean square (MS) is the sum of squares (SS) for a particular row divided by the
degrees of freedom (d.f.) for the same row. Assuming the same number of subjects n for each
level of factor A, we have

Source d.f. SS F

A a1 SSA M S/.\/ M Serror
Error (S/A) a(n-1) SSerror

Total N-1=an-1 SSota

where a is the number of levels of factor A, N isthe total number of observations (subjects), and
n is the number of subjects (or ‘replications’) per level of factor A. Note that the error is some-
timeswritten ‘S/A’, i.e. ‘subjects within A’.

SPSStechnique Data layoult:
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depvar A
datum  level_1

datum  level_1
datum level 1
datum level 2
datum  level 2

Syntax:

UNIANOVA
depvar BY A
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = A .

Using the menus, choose Analyze — General Linear M odel — Univariate.

fakedata5-1B1W cav - 5PSS5 Data Editor

File Edt Yiew Data Transform | Analyze Graphs  Utiities window Help

ZH|S n_l_lﬁl EI|_ E;fcor[lt;hve Statistics ’ @

Custom T ables

Compare Means

]
]
»
General Linear Model »
»
»
L3
L3

H—"—"——"7+
a efive Univariate. I

1 1.00 40.C Mised Models ultivariate... L

2 1.00 41.0 LCorrelate Bepeated Measures...

3 1.00 420 Begression

4

Yarance Components...

1.00 410  Loglinear

We now seethis:

: Univariate

@— Dependent Variable: Model...
& depar =
Eired Factors) M&I
’7 Plots...
Paost Hae...
Random Factor(s); Gz

LCovariate(s):

WLS Weight:
l—
ok I Eastel Eesell Eam:ell Help |

Our dependent variable is depvar; our (fixed) factor is A:

: Univanate

Dependent Variable: Model
& depear
Conftrasts...
Fixed Factars)
@3 Plats.
E Past Hoe.

Random Factors): 3
Save...

DOptions.

LCoveaniate(s):

WLS Weight
—

Ok | Easlel ﬂssell Eancell Hs\pl

i

Once everything else is OK, click ‘OK’ to run the analysis, or ‘Paste’ to copy the syntax for the
analysisto a syntax window.
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7.2 Two between-subjects factors

Two-way ANOVA

Alternative names

Example

Notes

Model description
(S= subjects)

Model

Sources of variance

ANOVA table

Factorial ANOVA

ax b factorial ANOVA (where a and b are the number of levels of factors A and B; e.g. ‘2
x 5 factoria’)

Factorial, completely randomized design ANOVA

Subjects are assigned at random to a high-arousal (A1) or alow-arousal (A2) situation, and are
also given drug (B1) or placebo (B2) (completely randomized design; 2 x 2 factorial ANOVA).
Their performance is measured on atask (dependent variable). Does the arousal situation (A) or
the drug (B) affect performance, and does the effect of the drug depend on arousal (A x B inter-
action)?

A factoria design isonein which every level of every factor is paired with every level of every
other factor (Howell, 1997, p. 401).

depvar =AxXB xS

Yik =4 +a; + B +af + &k

where

Yij« is the dependent variable in condition A;, B; for subject k

w1 isthe overall mean

o; isthe contribution from level i of factor A (Ai): & = us —u and X5 =0.
f; is the contribution from level j of factor B (B)): f; =MUg —H and X3, =0.

af; is the contribution from the interaction of level i of factor A and level j of factor B —
thet is, the degree to which the mean of condition A;jB; deviates from what you'd expect
based on the overall mean and the separate contributions of A; and B; (= the interaction A x

B),i.e. of; =HUnpg, —(u+o; + ;) . By thisdefinition, X afj =X aff; =0.

i ]
&jk 1s everything else (the *uniqueness’ of subject k in condition i of factor A and condition j
of factor B, ‘error’, ‘individual variation’, etc.): & = Yy —(4; +&; + B; +af;) . By our
usua assumption of normal distribution of error, & is normally distributed with mean 0
and variance o2 .

Asbefore, we consider only the sources of variation for the ANOVA analysis:

SSotd = SSA + SSB + SSAXB + SSerror

where

SSta iSthe total variability

SS, isthe variability attributable to factor A

SSg isthe variability attributable to factor B

SSaxs isthe variahility attributable to the interaction

SSaror 1S the ‘error’ variability (everything that’s left over). This is sometimes written
SSy/ag (indicating variability due to inter-subject variation within A x B combinations).

In all cases, the mean square (MS) is the sum of squares (SS) for a particular row divided by the
degrees of freedom (d.f.) for the same row. Assuming the same number of subjects n for each
cell (combination of one level of factor A and one level of factor B), we have

Source d.f. SS F

A a1 SSA M S/.\/ M Serror
B b-1 SS MSz/M Sqror
AxB (a-1)(b-1) SSas MSa,e/M Saror

Error (S/AB) ab(n-1) SSaror
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Tota N-1 = abn-1 SSota

where a is the number of levels of factor A, N isthe total number of observations (subjects), and
n is the number of subjects (or ‘replications’) per cell.

SPSStechnique Data layout:

depvar A B

datum level_1 level_1
datum level_1 level_1
datum level_1 level_2
datum level_1 level_2
datum level 2 level_1
datum level_2 level_1
datum level 2 level 2
datum level 2 level 2

Syntax:

UNIANOVA
depvar BY a b
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = a b a*b .

Using the menus, choose Analyze — General Linear Model — Univariate. Enter A and B as
between-subj ects factors.
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7.3 Three between-subjects factors

Alternative names

Example

Notes

Model description
(S= subjects)

Model

Sources of variance

ANOVA table

e axbxcfactorial ANOVA (where a, b and c are the number of levels of factors A, B, and
C; eg.'2x5x 3factorid’)
e Factorial, completely randomized design ANOVA

Subjects have their prefrontal cortex destroyed (A1) or not (A2) or have a special prefrontal
cortex augmenter fitted (A3), are assigned at random to a high-arousal (B1) or a low-arousal
(B2) situation, and are aso given drug (C1) or placebo (C2) (completely randomized design; 3 x
2 x 2 factorial ANOVA). Their performance is measured on a task (dependent variable). Do
factors A, B, or C affect performance? Do they interact?

depvar =AxXxBXxCx S

Yiw = U+0 + B +y +afj + oy + BY ik + oBYi + Eija

where

e Xju isthe dependent variable in condition A;, B;, Cy for subject |
e uistheoveral mean

e o isthecontribution fromlevel i of factor A: o = up —u

e f;isthe contribution fromlevel j of factor B: f3; =Hg — U
* yisthecontribution fromlevel k of factor C: y = uc, —u

e af; is the contribution from the interaction of level i of factor A and level j of factor B:
of; =Hpp, —(u+a+p)

e ayi is the contribution from the interaction of level i of factor A and level k of factor C:
Y = Mpac, — W+ + %)

* By is the contribution from the interaction of level j of factor B and level k of factor C:
By = HMs,c, =+ B+ %)

* gju iseverything else (the ‘uniqueness’ of subject | in condition i of factor A and condition j
of factor B and condition k of factor C, ‘error’, ‘individual variation’, etc.):
i =ik —(U+a; + By +y +ofy oy + Brik) -

As before, we consider only the sources of variation for the ANOVA analysis:

SSiota = SSa + S5 + S + SSavg + SSaxc + SSexc + SSasexc + SSaror

where

SSta iSthe total variability

SS, isthe variability attributable to factor A

SS; isthe variability attributable to factor B

S isthe variability attributable to factor C

SSaxp isthe variability attributable to the A x B interaction

SSaxc isthe variability attributable to the A x C interaction

SS;,c isthe variability attributable to the B x C interaction

SSaxexc IS the variability attributable to the A x B x C interaction

SSuror 1S the ‘error’ variability (everything that’s left over). This is sometimes written
SSy/agc (indicating variability due to inter-subject variation within A x B x C combina
tions).

In all cases, the mean square (MS) is the sum of squares (SS) for a particular row divided by the
degrees of freedom (d.f.) for the same row. Assuming the same number of subjects n for each
cell (combination of one level of factor A, one level of factor B, and one level of factor C) we
have
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Source d.f. SS F

A a1 SSA “AS%/“ASer

B b-1 SSs M S/ M Serror

C c-1 SSC IVlSC/MSbrror
AxB (a—l)(b—l) SSAxg M SAXB/M Serror
AxC (a-1)(c-1) SSaxc M Saxc/M Saror
BxC (b-1)(c-1) SSavc M S/ M Sarror
AxBxC (a-1)(b-1)(c1) SSaxexC M Saxgxc/ M Saror
Error (S/ABC) abc(n-1) SSeror

Total N-1 = abcn-1 SSoota

111

where a is the number of levels of factor A (etc.), N is the total number of observations (sub-
jects), and n isthe number of subjects (or ‘replications’) per cell.

Data layout:
depvar A B C
datum level 1 level_1 level_1
datum level 1 leve 1 level 1
datum level 1 leve 2 level 1
datum level 1 leve 2 level 1
datum level 2 level 1 level 1
datum level 2 level 1 level 1
datum level 2 leve_2 level 1
datum level 2 leve_2 level 1
datum level 1 level_1 level_2
datum level_ 1 level_1 level_2
datum level_ 1 leve_2 level_2
datum level 1 leve_2 level_2
datum level 2 level 1 level 2
datum level 2 levd 1 level 2
datum level 2 levd 2 level 2
datum level 2 levd 2 level 2
Syntax:
UNIANOVA

depvar BY a b c

/METHOD = SSTYPE (3)
/INTERCEPT =
/CRITERIA = ALPHA(.05)
/DESIGN = a b ¢ a*b a*c b*c a*b*c .

INCLUDE

Using the menus, choose Analyze — General Linear Model — Univariate. Enter A, B, C as
between-subj ects factors.



7. Specific designs 112

7.4 One within-subjects factor

Alternativenames e  Repeated-measures ANOV A (with one factor)
e Randomized complete block (RCB) design (with one factor)
e Single-factor within-subjects design

Examples Twenty students have their digit span tested on dry land (U1) and then those same students have
afurther digit span test when they are diving in a dry suit in the Pacific Ocean (U2). Does their
location affect performance?

A researcher wishes to test the effectiveness of four fertilizers (U1, U2, U3, U4). He divides his
orchard into four blocks (equivalent to ‘subjects’) to account for variations across the orchard
(e.g. southern sunny block, northern cool block, eastern morning sun block, western evening
sun block). He divides each block into four plots and assigns fertilizers U1-U4 to each plot at
random, so that each block has all four fertilizersinit.

Notes Described in detail by Howell (1997, chapter 14). Total variation is first partitioned into varia-
tion between subjects and variation within subjects. Variation within subjects is then subdivided
into variation between treatments (levels of our factor) and error.

We're not particularly interested in variation between subjects, but accounting for it allows us to
isolate the effect of our factor more accurately.

If our factor has only two levels, thisis equivalent to atwo-sample paired t test.

Mode! description  depvar = (U x S)
(S= subjects)

Model Either

where

e Y isthe dependent variable for subject i in condition U,

e s istheoveral mean

e isthe contribution from a particular person or subject (subject i, or S): 7z; = ug — u

* ¢;isthecontribution from aparticular level (level j) of the factor U: ¢; =Hy, —H

e ¢ is everything else (the experimental error associated with subject i in condition j):
gij = X” —(/1+77:i +C(J) .

or, perhaps better,

Yij =u+7i +a; +7a; +&; (nonadditive model)
where
e 7 isthe contribution from the interaction of subject i with treatment j:
e inthiscase &; would beredefined as ¢ =Y;; — (¢ +7; + o + 7)) .
However, if we measure each person in each condition once, we will not be able to measure
differences in the way subjects respond to different conditions (ze;;) independently of other
sources of error (g;). (To do that, we'd need to measure subjects more than once, and then we'd
need a different model again!) Thisis another way of saying that the S x U interaction is con-
founded with — is! — the ‘error’ term. Therefore, the calculations do not differ for the two

models (Myers & Well, 1995, p. 242); the only difference isif you want to estimate w?, the pro-
portion of variance accounted for by a particular term (Myers & Well, 1995, pp. 252-255).

Sources of variance Analysis of variance discards constant terms (like 1) and examines the sources of variability
(variance). Writing this in terms of sums of squares (SS),

Sstotd = SSsubjects + SSJ + SSerror



ANOVA table

SPSStechnique 1

SPSStechnique 2
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where SS, is the total variability, SSy is the variability attributable to the (within-subjects)
factor U, and SS,or isthe ‘error’ variability (everything that's left over).

This equation can be used to represent both models described above (with or without the subject
x factor interaction), since, to repeat, the subject x factor interaction is the error term in this
design (with only one score per cell) and cannot be separated from ‘error’; see Howell (1997, p.
452-4).

In all cases, the mean square (MS) is the sum of squares (SS) for a particular row divided by the
degrees of freedom (d.f.) for the same row. Assuming one observation per cell, we have

Source d.f. SS F

Between subjects (S) -1 SSqjects M Squbjects” M Serror
U u-1 S MSy/M Seror
Error (Sx U) (n-1)(u-1) SSarror

Total N-1=un-1 SSiotal

where u is the number of levels of factor U, N is the total number of observations (= un), and n
is the number of subjects.

One row, one subject:

Ulevell Ulevel2 Ulevel3
datum  datum  datum
datum  datum  datum
datum  datum  datum

Syntax:

GLM
ul u2 u3
/WSFACTOR = u 3 Polynomial
/METHOD = SSTYPE (3)
/CRITERIA ALPHA(.05)
/WSDESIGN = u .

SPSS won't report the * between-subjects’ effects (the one based on SSqjpjeqs, Which we're not
particularly interested in). It'll report something else (I'm not sure what...) as ‘Between-
Subjects Effects: Intercept’, and the within-subjects effect that we are interested in as ‘Within-
Subjets: U'.

It will also report Mauchly’s test of sphericity of the covariance matrix, together with Green-
house-Geisser and Huynh—Feldt corrections for use if the assumption of sphericity is violated.

Using the menus, choose Analyze — General Linear Model — Repeated M easures. Define
the within-subjects factor (with its number of levels). Then you can assign individual variables
(e.g. Ulevell) to appropriate levels of the factor. For aworked example, see p. 122.

One column, one variable:

depvar  subject U

datum subj 1 level_ 1
datum subj 1 level_2
datum subj 1 level_3
datum subj 2 level_ 1
datum subj 2 level_2
datum subj 2 level 3
datum subj 3 leve 1
datum subj 3 leve 2
datum subj 3 level 3
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Syntax:

GLM depvar BY subject u
/RANDOM = subject
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = subject u .

SPSS will report the within-subjects effect as ‘ Between-Subjects: U’ (since it doesn’'t know that
anything's a within-subjects effect!). It'll report the SSyeqs term (the difference between sub-
jects) as ‘ Between-Subjects: SUBJECT'. It'l] report the same ‘ Intercept’ term as before.

Mauchly’s test is not reported; neither are the G—G and H-F corrections. To obtain these, use
technique 1 instead.

Y ou could also use this:

GLM depvar BY subject u
/RANDOM = subject
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = subject u subject*u .

... but as we've said, the Subject x U interaction is confounded with error in this design, and
SPSS simply won't give you aresult for it. All other answers will be the same.

Using the menus, choose Analyze — General Linear M odel — Univariate. Enter U as afixed
factor; enter Subject asarandom factor.



7. Specific designs 115

7.5 Two within-subjects factors

Alternative names

Example

Notes
Model description

Model

Repeated-measures ANOV A (with two factors)

Randomized complete block (RCB) design (with two factors)
Two-factor within-subjects design

Split-block design

Twenty students have their digit span tested on dry land when sober (U1 V1) and then those
same students have a further digit span test when they’re on dry land and sober (U1 V2), when
they are diving in adry suit in the Pacific Ocean and sober (U2 V1) and when they’re drunk and
diving (U2 V?2). Don't try this at home, kids. Does their location or sobriety affect performance?
Do these two factors interact?

A researcher wishes to test the effectiveness of three fertilizers (U1, U2, U3) and three tree
thinning techniques (V1, V2, V3). He divides his national park forest into four blocks (equiva-
lent to ‘subjects’) to account for variations across the park (e.g. mountainous conifers, lowland
deciduous, timber-harvested forest, volcanic ash area). He divides each block into nine plots and
assigns fertilizers U1-U3 and thinning techniques V1-V3 to each plot at random but such that
every block contains every combination of fertilizer and thinning treatment once.

depvar = (U XV x9)

There are two alternative models (see Howell, 1997, p.486-7, which describes the problem for
three within-subjects factors; thisis merely a simpler case). The first, simpler model, is this, in
which the Subject term doesn’t interact with anything:

Yik = +a; + B +of + 1y + €
where
¢ Yisthe dependent variable for subject k in condition U;, V;
e uistheoverall mean
* ¢jisthecontribution from a particular level (level i) of factor U: o = 1y — 1

e f isthe contribution from a particular level (level j) of factor V: g; = ty, — 1
* misthe contribution from a particular person or subject (subject K): 7y = ug —u

* i« is everything else (the experimental error associated with subject k in condition U;V)):
& =Y — W+ o + B +affy + 1)

The second, probably better model, is this, which alows the Subject term to interact with the
other variables (i.e. accounts for the fact that different treatments may affect different subjects
in different ways):

Yik =4 +a; + B +ofj +my oy + B+ ofmi + Eijk

where

e amyg IS the contribution from the interaction of subject k with treatment U;:
amy = fsy, — W+ + )

e pfmyc is the contribution from the interaction of subject k with treatment V;:
B = Hsy; —(u+ B +m)

e afmy is the contribution from the interaction of subject k with the treatment combination
UiVj: afm =Hsuy, —(U+ao; + By +offy + 7y +omy + Brry)

e inthiscase, we would redefine the error term:
& =ik —(U+a; + By +ofj + 7wy +amy + B + 0P )

However, this more complex model does have a problem: since we have included the Subject
term as a variable that interacts with everything, we now only have one score per cell, and we
have no residual left for estimating error (g;). However, as it happens (Howell, 1997, pp. 487-
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8), we can use the sum of squares for the U x S term (ax;) as an error estimate for the U term
(o), the sum of squaresfor V x Sas an error estimate for the V term, and so on. The full model
isusually preferable (Howell, 1997, p. 487).
Either the reduced model
SSota = SSSubjects + 8Sy + SSy + SSywy + SSaror
or the full model
SSoota = SSaubjects + SSy + SSy + SSyxy + SSuxs + SSyxs + SSuxvxs

In all cases, the mean square (MS) is the sum of squares (SS) for a particular row divided by the
degrees of freedom (d.f.) for the same row. Assuming one observation per cell, we have either

Source df. SS F

Between subjects n-1 SSubjects

U u-1 SSy MSu/MSeror
V v—-1 SS M S\// M Sqrror
UxV (U—1)(v-1) SSuxy M Susev/M Sarror
Error (n-1)(uv-1) SSarror

Tota N-1=uvn-1 SSo

or, with the full model:

Source d.f. SS F

Between subjects (S) n-1 SSs

U u-1 SSy MSy/MSyxs
error Ux S (u-1)(n-1) SSuxs

Vv v—1 Ss, MS,/MSyxs
errorV x S (v-1)(n-1) SSyxs

UxV (U-1)(v-1) SSuxv MSuw/MSuavxs
erorUxXV xS (u-1)(v1)(n-1) SSUxvxs

Total N-1=uvn-1 SSota

where u is the number of levels of factor U, etc., N is the total number of observations (= uvn),
and n isthe number of subjects.

One row, one subject:

uivli u2vi uiv2 u2v2
datum datum datum datum
datum datum datum datum
datum datum datum datum

Syntax:

GLM
ulvl ulv2 u2vl u2v2
/WSFACTOR = u 2 Polynomial v 2 Polynomial
/METHOD = SSTYPE (3)
/CRITERIA ALPHA(.05)
/WSDESIGN u v u*v .

This will give you the *full model’ answer (see above), in which the * Subject’ factor is allowed
to interact with everything in full.

Using the menus, choose Analyze — General Linear Model — Repeated M easures. Define
the within-subjects factors (with their numbers of levels). Then you can assign individual vari-
ables (e.g. U1V1) to appropriate levels of the factors. For a worked example, see p. 122.

One column, one variable:
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=
s

depvar
datum
datum
datum
datum
datum
datum
datum
datum

NNNMNNR R R
NFPNRPNERENPR|IC
NNRPRPNNR PR

Toget the‘reduced’ model (see above):

GLM depvar BY subject u v
/RANDOM = subject
/METHOD = SSTYPE (3)
/CRITERIA = ALPHA(.05)
/DESIGN = u v u*v subject .

To get the ‘full’ model, matching SPSS' s usual within-subjects technique (see above):

GLM depvar BY subject u v
/RANDOM = subject
/METHOD = SSTYPE (3)
/CRITERIA = ALPHA(.05)
/DESIGN = u v u*v subject u*subject v*subject u*v*subject .

As usual with this technique, Mauchly’s test is not reported; neither are the G-G and H-F cor-
rections. To obtain these, use technique 1 instead.

Using the menus, choose Analyze — General Linear Model — Univariate. Enter U, V as
fixed factors; enter Subject as arandom factor.
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7.6 Three within-subjects factors

Alternativenames e  Repeated-measures ANOV A (with three factors)
e Randomized complete block (RCB) design (with three factors)
e Three-factor within-subjects design

Example Oh, it gets boring making these up. A set of subjects are all tested in every combination of three
treatments (U;...U,, V1...V,, W1...\W,).
Notes In the agricultural version, thisiswhat an RCB design might look like:
Block 1 Block 2 Block 3

Ul U2 Ul Ul u2 Ul Ul Ul Ul
V1 V1 V1 V2 V1 V2 V2 V1 V1
W3 W1 Wi W3 W2 Wi w2 W3 W1
Ul u2 u2 U2 u2 Ul u2 u2 u2
V1 V2 V2 V1 V2 V1 V2 Vi V2
w2 w3 w2 W3 W3 W1 w2 w2 w3
U2 Ul Ul u2 Ul u2 u2 Ul U2
V2 V2 V2 V2 V1 V2 V2 V1 V1
Wi w2 W3 w2 W3 W1 Wi w2 W1
U2 Ul U2 U2 Ul Ul U2 Ul Ul
V1 V2 V1 V1 V1 V2 V1 V2 V2
w2 W1 W3 Wil w2 w2 W3 w1 w3

Randomized complete block design with three blocks.

Factors are U (2 levels), V (2 levels), W (3 levels).

Every block is treated with all 12 combinations of W, V, and U in full factorial fashion.
The treatments are randomized within the 12 divisions of each block.

In our terminology, the agricultural ‘block’ is the psychological ‘subject’: each subject experi-
ences each combination of the factorsU, V, and W.

Model description  depvar = (U XV X W x S)

Model There are two alternative models (see Howell, 1997, p.486-8). The first, simpler model, is this,
in which the Subject term doesn’t interact with anything:

i =u+0 +fi + 1 oy +ayic+ By i + abYik + 7 + Eij

where

Yiju is the dependent variable for subject | in condition U;, V;j, W

w1 isthe overall mean

o; isthe contribution from a particular level (level i) of factor U

B isthe contribution from a particular level (level j) of factor V

kIS the contribution from a particular level (level k) of factor W

aflj, ayik, Prik and afyix are the contributions from the UV, UW, VW, and UVW interaction

terms

= isthe contribution from a particular person or subject (subject )

e gju IS everything else (the experimental error associated with subject | in condition
UiV;Wy).

The second, probably better model, is this, which alows the Subject term to interact with the
other variables (i.e. accounts for the fact that different treatments may affect different subjects
in different ways):

Yin =u+0o;+ B +y+ofy +ayi + By tobyi +m ramy + By +ymyg +

opry +aymig + PyEi + 0Py + Eij
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where

e am isthe contribution from the interaction of subject | with treatment U;

e [y isthe contribution from the interaction of subject | with treatment V;

e ymy isthe contribution from the interaction of subject | with treatment W,

e afm is the contribution from the interaction of subject | with the treatment combination
(VAYA

e aymy is the contribution from the interaction of subject | with the treatment combination
UiW,

e pymy is the contribution from the interaction of subject | with the treatment combination
VWi

e afymjy is the contribution from the interaction of subject | with the treatment combination
UiV,Wy

For exact specification of each of these components (e.g. &; = w4y, — 1) see the previous model

(p. 115-); it'sjust the same but with more terms.

However, this more complex model does have a problem: since we have included the Subject
term as a variable that interacts with everything, we now only have one score per cell, and we
have no residual left for estimating error (g;). However, as it happens (Howell, 1997, pp. 487-
8), we can use the sum of squares for the U x S term (ax;) as an error estimate for the U term

(o), the sum of squaresfor V x Sasan error estimate for the V term, and so on. The full model
isusually preferable (Howell, 1997, p. 487).

Either the reduced model
SSita = SSabjerts + SSy + SSy + SSw + SSywv + SSuxw + SSusw + SSuxvsw + SSerror

or the full model

SSiota = SSuubjects + SSy + SSy + SSy + SSyxv + SSuw + SSyxw + SSusvsw
+ SSU><S + SS\/XS + SS\NXS + SSJXVXS + SSUXWXS + SS\/><W><S + SSU><V><W><S

In all cases, the mean square (MS) is the sum of squares (SS) for a particular row divided by the
degrees of freedom (d.f.) for the same row. Assuming one observation per cell, we have either

Source d.f. SS F

Between subjects  n-1 SSajects

U u-1 SSJ M SJ/ M Serror

A v—1 SS\/ M S\// M Serror
w w-1 SSw MSw/M Serror
UxV (U—l)(V—l) SSJXV M SJXV/ M Serror
UxW (U-1)(w-1) SSusw M Sy’ M Saror
V xXW (V_l) (\N_l) SS\/><W M S\/><W/ M Serror
UxV xW (U—l)(V—l)(\N—l) SSJXVXW M SJXVXW/M Sen-or
Error (n-1)(uvw-1) SSerror

Total N-1=uwwn-1 SSita

or inthe ‘full’ version:

Source d.f. SS F

Between subjects  n-1

U w1 SSy MSy/MSyxs
error Ux S (u-1)(n-1) SSuxs

\% v-1 SSy MS,/MSys
errorV xS (v-1)(n-1) SSixs

W w-1 SSw MSw/MSyxs
error W x S (Ww=1)(n-1) SSwxs

UxV (U—l)(V—l) SSJXV M SJXV/M SJ><V><S
error UxV xS (D)(v-1)(n=1) SSUsvxs

Uxw (U—l)(\N—l) SSJXW M SJXW/ M SJXWXS
error UxW x S (1) (w-1)(n-1) SSUswixs
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V xW (V1D (w-1) SSixw MSy,w/ MSysawxs
errorVxW xS (V1) (w=1)(n-1) SSyswxs

UxVxW (U—l) (V_l) (\N_l) SSysvsw M Syvsan? M Sysvsawxs
error UxV x W x S(u-1)(v=)(W=1)(n-1)  SSuxvswsxs

Total N-1=uwwn-1 SSiota

where u is the number of levels of factor U, etc., N isthe total number of observations (= uvwn),
and n isthe number of subjects.

One row, one subject:

Ulviwl U2viwl Ulv2wil U2v2wi U1VIW2 U2VIW2 U1V2W2 U2V2W2 (etc.)
datum datum datum datum datum datum datum datum
datum datum datum datum datum datum datum datum
datum datum datum datum datum datum datum  datum

Syntax:

GLM
ulvliwl ulvliw2 ulv2wl ulv2w2 u2vliwl u2vliw2 u2v2wl u2v2w2
/WSFACTOR = u 2 Polynomial v 2 Polynomial w 2 Polynomial
/METHOD = SSTYPE (3)
/CRITERIA = ALPHA(.05)
JWSDESIGN = u Vv W u*v Uu*w v*w u*vi*w .

This will give you the ‘full model’ answer (see above), in which the ‘ Subject’ factor is allowed
to interact with everything in full. This layout doesn’t allow you to use the ‘reduced’ model, as
far as| can see.

Using the menus, choose Analyze — General Linear Model — Repeated M easures. Define
the within-subjects factors (with their numbers of levels). Then you can assign individual vari-
ables (e.g. ULV1WL1) to appropriate levels of the factors. For aworked example, see p. 122.

One column, one variable:

Subject depvar
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum

U
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

NNNNRFRPRFRPEFRPEPNMNNNNNRPRRRE
NNEFEPEPNNEFEERPNNEPERPNDNERRK
NNNNNMNNNNRPRRPRPRPRPRPRPRRERRE :E

To get the ‘reduced’ model (see above):

GLM depvar BY subject u v w
/RANDOM = subject
/METHOD = SSTYPE (3)
/CRITERIA = ALPHA(.05)
/DESIGN = u v w Uu*v u*w v*w u*v*w subject .

To get the ‘full’ model, matching SPSS' s usual within-subjects technique (see above):

GLM depvar BY subject u v w
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/RANDOM = subject
/METHOD = SSTYPE (3)
/CRITERIA = ALPHA(.05)
/DESIGN = [subject]

u u*subject

v v*subject

w w*subject

u*v u*v*subject

u*w u*w*subject

v*w v*w*subject

u*v*w subject u*v*w*subject .

As usual with this technique, Mauchly’s test is not reported; neither are the G-G and H—F cor-
rections.

Using the menus, choose Analyze — General Linear Model — Univariate. Enter A, B, C as
fixed factors; enter Subject as arandom factor.
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7.7 One between- and one within-subjects factor

Alternative names

e Split-plot design (Keppel, 1991)

e Mixed two-factor within-subjects design (Keppel, 1991)

e Repeated measures analysis using a split-plot design (SPSS, 2001, p. 464)

e Univariate mixed models approach with subject as a random effect (SPSS, 2001, p. 464)
Example We take three groups of rats, n = 8 per group (s = 24). We give one group treatment Al, one

group treatment A2, and one group treatment A3. (One subject only experiences one treatment.)
Then we measure every subject’s performance at six time points U1...U6.

Notes We first partition the total variation into between-subjects variability and within-subjects vari-
ahility.

The between-subjects variability can be attributed to either the effect of the treatment group (A),
or differences between subjects in the same group (‘S within A’ or ‘'S/A’). (This notation indi-
cates that there is a different group of subjects at each level of the between-subjects factor, A;
we could not measure simply of ‘subject variation independent of the effects of A’ since no
subjects ever serve in more than one group, or level of A. SPSS uses the alternative notation of
S(A).) So we have these sources of between-subjects variability:

A

S/A

The within-subjects variability can be attributed to either the effects of the time point (U), or an
interaction between the time point and the drug group (U x A), or an interaction between the
time point and the subject-to-subject variability, which again we can only measure within a drug
group (U x S/A). So we have these sources of within-subject variability:

U

UxA

U x S/A

Model description  depvar = A x (Ux )
Model Following Myers & Well (1995, p. 295-6):
Yik = U+ + 7 + P + 0P + 7B i + Eijk

where

¢ Yisthe dependent variable for subject j in group A; and condition Uy

o uistheoveral mean

* o isthecontribution from aparticular level (level i) of factor A: o5 = s — 1

e i is the contribution from a particular person or subject (subject j), who only serves
within condition A; (*subject within group’, or S/A): 7 ; =HUs ip —H
e (Thereisno straightforward interaction of A with S: every subject is only measured at one

level of A, so this term would be indistinguishable from the subject-only effect z;;.)
e fkisthe contribution from a particular level (level K) of factor U: S, = iy, —p

* afiisthecontribution from theinteraction of A; and Ux: ofi = tpu, — (1 + o + fy)

*  7fjwi isthe contribution from the interaction of Uy with subject j, which can only be mess-
ured within one level of A (it'sthe 'SU/A’ term): 73 i =Usy, n — W7y +5)

e (Thereis no straightforward three-way A x U x S interaction: every subject is only meas-
ured at one level of A, so this term would be indistinguishable from the SU/ZA effect zfji.)

o gk iseverything else (the experimental error associated with measuring person j — who
always experiences treatment A; — in condition Uy):

Eij =Yix —(U+ i +7y + B + B + P si) -

Note that we cannot actually measure & independent of the SU/A term if we only have one
measurement per subject per level of U.
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SSiota = SShetween subjects T SSwithin subjects
SShetween subjects — SSa + SSy/a
SSyithin subjects = SSu + SSyxa + SSuxs/a

SSiia = SSa + SSe/a + SSy + SSyxa + SSuxe/a

We have two different ‘error’ terms, one for the between-subjects factor and one for the within-
subjects factor (and its interaction with the between-subjects factor), so we can't just label them
‘SSaror - But we could rewrite the total like thisif we wanted:

SSiota = SSa *+ SSuror-between + SSu + SSyxa + SSaror-within

ANOVA table Source d.f. SS F
Between subjects (S): s-1=an-1
A a1 SSa MSa/MSs/a
error S/A (an-1)—a-1) =a(n-1) SSg/a
Within subjects: (N-1)—s-1) = an(u-1)
U w1 SSy MSy/MSyxs/a
UxA (1) (a-1) SSyxa MSysa /M Syxs/a
error U x S/A a(u-1)(n-1) SSuxs/a
Tota N-1=aun-1 SSota
where a is the number of levels of factor A, etc., N isthe total number of observations (= aun), n
is the number of subjects per group (per level of A), and sisthe total number of subjects (= an).
SPSStechnique 1 One subject, one row:
A Ul U2
1 datum  datum
1 datum  datum
1 datum  datum
2 datum  datum
2 datum  datum
2 datum  datum

Using the menus, choose Analyze — General Linear Model — Repeated M easures. Define
the within-subjects factor (with its number of levels). Then you can assign individual variables
(e.g. U1) to appropriate levels of the factors, and assign the between-subjects factor.

fakedata5-1B1W . sav - SPS5 Data Editor

File Edit View Data Transtorm | Analyze Graphs  Utilies Window Help

- - Feportz:
Eln |§| = | (“xI EI Descriptive Statistics
|‘I ‘a F Custom T ables
Compare Means
a fl General Linear Model

1 1.00 0.0 Mied Models
2 1.00 4.0 LCorrelate
3 1.00 420 Regression
4 1.00 A1.0 Loglinear

4

3
»
4
»
4
3
»
]

|| %[0

Univariate...
HMultivariate...

“Warance Components...

Here'swhere we fill in the list of within-subjects factors and the number of levels. Type them in

and click ‘Add’.
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If we had more within-subjects factors, we could add them too. Once we' ve finished, we click

‘Define’.

: Repeated Measures

Within-Subjects Variables  [u]:

+8
e ul

du 0

< subject

Between-Subjects Factor(s):

LCovariates:

Model... | Cogtrasts...l Flats... I Postﬂoc...l Save...

| Dptiong... |

We can now fill in the variables (U1, U2) corresponding to the levels of factor U; we can also

define A as a between-subjects factor.
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: Repeated Measures

< subject

< depar

Model... | Cogtrasts...|

[T
]

[

]

Wwithin-Subjects Yariables

[ul:
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Once everything elseis OK, click ‘OK’ to run the analysis, or ‘Paste’ to copy the syntax for the
analysisto a syntax window. This analysis produces the following syntax:

GLM

ul u2 BY a

/WSFACTOR = u 2 Polynomial

/METHOD

/CRITERIA
/WSDESIGN

/DESIGN

SSTYPE (3)
ALPHA(.05)

u

Qonou

One column, one variable:

A Subject U depvar

1 1 1 datum

1 1 2 datum

1 2 1 datum

1 2 2 datum

1 3 1 datum

1 3 1 datum

2 14 1 datum

2 14 2 datum

2 15 1 datum

2 15 2 datum

Syntax:

GLM depvar BY A subject U
/RANDOM = subject
/DESIGN = A subject*A

U U*A U*subject*A.
or aternatively

GLM depvar BY A subject U
/RANDOM = subject
/DESIGN = A subject (A)

U U*A U*subject (4) .

(This syntax is an example on page 464 of the SPSS 11.0 Syntax Reference Guide PDF.) It tests
MS, against M Sypjecxa, and it tests the others (MS, and MSy.a) against what it simply calls
M Saror- AS usual with this technique, Mauchly’ s test is not reported; neither are the G-G and H—
F corrections. The underlined bit is optional, since this is the same as the residua error and

won't be fully calculated, but including it won't change the answers for any other factor.
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Not entirely trivial to accomplish with the SPSS menus. Using the menus, choose Analyze —
General Linear Model — Univariate. Enter A, U as fixed factors; enter Subject as a random
factor. Since SPSS will get the model wrong for ‘mixed’ models (by including Sand U x S
terms), you then need to edit the Model directly before running the analysis. Untick ‘Full facto-
rial’ by ticking ‘ Custom'. Enter the desired terms (in this case the between subjects term A, the
error term S/A which you enter as S x A, the within-subject bits U, U x A, and if you want, the
error term U x S/A which you enter as U x Sx A, though that’s optional).
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7.8 Two between-subjects factors and one within-subjects factor

Alternative names

Example

Notes

Model description

Model

Fat men, thin men, fat women, and thin women (A:B;, A-B1, A1B,, and A,B,) al have their
blood pressure measured in the morning (U;) and in the evening (U,). Does blood pressure de-
pend on any of these factors, or on a combination of them? Obesity and sex are between-
subjects variables; time of day is awithin-subject variable.

We first partition the total variation into between-subjects variability and within-subjects vari-
ability.

The between-subjects variability can be attributed to either the effect of the between-subjects
factors (A, B, A x B), or differences between subjects in the same group (* S within group’, or in
Keppel's notation, since a group is specified by a unique combination of A and B, ‘S/AB’). So
we have these sources of between-subjects variability:

A

B

AxB

S/ AB (between-subjects error)

The within-subjects variability can be attributed to either the effects of the within-subjects fac-
tor (U), or some form of interaction between U and the between-subjects factors (U x A, U x B,
U x A x B), or an interaction between U and the subject-to-subject variability, which again we
can only measure within a ‘group’ (U x S/AB). So we have these sources of within-subject
variability:

U

UXxA

UxB

UxAXB

U x S/AB (within-subjects error)

depvar = A x B x (U x )
I made this up, but | got it right for a change (Myers & Well, 1995, p. 308):

i =u+o + By +ofy + 7y
+ +ayy + By oBYi + 7 a t Ei
where
* Y isthe dependent variable for subject k in condition A;, B, Uy

e uistheoverall mean
* ¢jisthecontribution from aparticular level (level i) of factor A: o = pp —p

e f isthe contribution from a particular level (level j) of factor B: 3} = Mg, —H

* afjjisthe contribution from the interaction of A; and B: o/ = p B, ~ (u+o+pB;)

e myijj isthe contribution from a particular person or subject (subject k), who is measured only
in condition A;B; (thisisthe S/AB term): 7, ;; =HUs, 1aB, —H

ey isthecontribution of level | of factor U: =y, —u

o ayi, By, and afyy; represent the Ai/U,, B;/U,, and Ai/B;/U; interaction contributions, re-
spectively: ayy = ppy, — U+ +n); Byy =ugy, —+p;+7); and
o = HaByu, —(u+o+pi+of+y +ay +Bry) -

e s represents the interaction of U, with subject k (who only experiences condition A;B;)
— the UxS/AB term:
Y rij = Hsu, 1AB; —(u+ao + B+ oy + 7y + n +ayy + By +oByy)

o gk iseverything else (the experimental error associated with measuring person k, who al-
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ways experiences treatment A;, in condition U)):

i =Yiu —(U+a; + By +afj + i + 0 Havy + By +oBriy +7xva ) - Of course,
this cannot be measured independently of the UxS/AB term (since there is only one obser-
vation in condition A;B;SU)).

SSiota = Ssoetween-wbjects + SSNithin-s.ijects
Ssoetwem—subjects =SS, + SS5 + SSaxg + SSerror-between
SSWithin—subjects =SSy + SSyxa + SSuxs + SSuxaxa + SSarror-within

Source d.f. SS F

Between subjects (S):  abn-1
A a1 SSa MSa/MSgy/pg
B b-1 SS MSs/MSs/ap
AxB (a-1)(b-1) SSaxs MSae/MSs/as
error S/AB ab(n-1) SSy/aB

Within subjects: abn(u-1)
U u-1 SSy MS,/MSyxs/ns
UxA (1) (a-1) SSuxa MSyxa /MSyys/as
UxB (w-1)(b-1) SSuxe MSuxg /MSyxs/as
UxAxB (w1)(a-1)(b-1) SSyxaxs MSyxaxe /M Suxs/as

error U x S/AB ab(u-1)(n-1)

Tota

N-1=abun-1

SSUXS/AB
Sstotd

where a is the number of levels of factor A, etc., N isthe total number of observations (= abun),
and n is the number of subjects per group (where a group is defined by the combination of fac-

tors A and B).

One subject, one row:

Ul U2 Us...

NNR R R RED>

Syntax:

GLM

PRNNPR P W@

datum datum datum...
datum datum datum...
datum datum datum...
datum datum datum...
datum datum datum...
datum datum datum...

ul u2 u3 BY a b
/WSFACTOR = u 3 Polynomial

/METHOD
/CRITERIA
/WSDESIGN
/DESIGN

SSTYPE (3)

= ALPHA(.05)
=u

a b a*b .

Using the menus, choose Analyze — General Linear Model — Repeated M easures. Define
the within-subjects factor (with its number of levels). Then you can assign individua variables
(e.g. U1) to appropriate levels of the factors, and assign the between-subjects factors.

One column, one variable:

A

Subject depvar

PR RPRRRRE

PRRPRRPRRRPm@

U

1 datum
2 datum
3 datum
1 datum
2 datum
3 datum

NNNRP P



1 2 3 1 datum
1 2 3 2 datum
1 2 3 3 datum
Syntax:
GLM depvar BY a b subject u
/RANDOM subject

/DESIGN = a b a*b subject*a*b

u u*a u*b u*a*b u*subject*a*b.

An alternative syntax isthis:

GLM depvar BY a b subject u
/RANDOM = subject
/DESIGN = a b a*b subject (a*b)
u u*a u*b u*a*b u*subject(a*b).

7. Specific designs
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As usual with this technique, Mauchly’s test is not reported; neither are the G-G and H-F cor-
rections. The underlined bit is optional, since thisis the same as the residual error and won't be
fully calculated, but including it won’t change the answers for any other factor.

Not entirely trivial to accomplish with the SPSS menus. Using the menus, choose Analyze —
General Linear Model — Univariate. Enter A, B, U as fixed factors; enter Subject as a random
factor. Since SPSS will get the model wrong for ‘mixed’ models (by including S and al sorts of
terms in which the between-subjects factors interact with S), you then need to edit the Model
directly before running the analysis. Untick ‘Full factorial’ by ticking ‘Custom’. Enter the de-
sired terms (in this case the between-subjects bits A, B, A x B, the error term S/AB which you
enter as S x A x B, the within-subjects bits U, U x A, U x B, U x A x B, and optionally the er-

ror term U x S/AB which you enter asU x Sx A x B).
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7.9 One between-subjects factor and two within-subjects factors

Alternative names

Example

Notes

Model description

Model

Sources of variance

ANOVA table

Rats are given a brain lesion (A;) or a sham operation (A,). They are repeatedly offered two
levers;, one delivers small, immediate reward, and the other delivers large, delayed reward.
Their preference for the large, delayed reward is assessed (dependent variable) at different de-
lays (Ug, Uy, ... Us). Furthermore, they are tested hungry (V) or sated (V,). All subjects experi-
ence all combinations of U and V, suitably counterbalanced, but one subject is only ever in one
A group.

We first partition the total variation into between-subjects variability and within-subjects vari-
ability.

The between-subjects variability can be attributed to either the effect the between-subjects fac-
tor (A), or differences between subjects in the same group (‘S within group’, or ‘S/A’). So we
have these sources of between-subjects variability:

A

S/ A (between-subjects error)

The within-subjects variability can be attributed to either the effects of the within-subjects fac-
tors (B, C, B x C), or some form of interaction between the within-subjects factors and the be-
tween-subjects factor (B x A, C x A, B x C x A), or an interaction between the within-subjects
factors and the subject-to-subject variability (B x S/A, C x S/A, B x C x S/A) where ‘S/A’
again refers to subject variability within a ‘group’ (defined by the between-subjects factor, A).
So we have these sources of within-subject variability:

U

UxA

U x S/A (within-subjects error term for the preceding two factors)

\%

V x A

V x S/A (within-subjects error term for the preceding two factors)

UxV

UxV xA

U x V x S/A (within-subjects error term for the preceding two factors)

depvar =A X (UXV x9)

This would be rather tedious to write out (see Myers & Well, 1995, p. 312); follow the princi-
plesin the previous model, which was for A x (U x S). The models always start with the overall
mean (x). Then the between-subject factors (here, «), and their interactions (here, none), are
added. Then there's subject term (), which is nested within levels of A. Then there are the
within-subject factors (8, y), and their interactions (#y). Then for the full model all within-
subject factors and interactions interact with the subject term, which itself is nested within A (to
give fr, yz, Byr). Finaly there’ sthe ¢ term.

SStotd = Ssoetween-subjects + SSNithin-subjects
Ssoetween—subjects = SSA + SSerror—between
SSyithin-sibjects = SSu + SSuxa + SSuxe/a

+3SSy + SSyxa + SSyxs/a
+ SSJXV + SSU><V><A + SSUXVXS/A
Source d.f. SS F
Between subjects. an-1
A a-1 SSa MSa/MSs/a
error S/A a(n-1) SSy/a
Within subjects: an(uv-1)
U u-1 SSy MSy/MSyxs/a
UxA (-1)(a-1) SSaxu MSa.u/MSyxs/a

error U x S/A a(u-1)(n-1) SSuxs/a
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\% v-1

V xA (v-1)(a-1)
error V x S/A a(v-1)(n-1)
UxV (u-1)(v-1)
UxV xA (1) (a-1)(u-1)

error U xV x S/A

Total

a(u-1)(v-1)(n-1)

N-1=auvn-1

SSy
SE”XA
SSV><S/A
Ssbxv
SSJXVXA
SEbXVXS/A

Sfimd
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IVls\/xAA/I\/“:-;\/XS/A
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where a is the number of levels of factor A, etc., N isthe total number of observations (= auvn),
and n isthe number of subjects per group (where group is defined by factor A).

One row, one subject:

A uivi uivz uU2vi u2v2
1 datum datum datum  datum
1 datum datum  datum  datum
1 datum datum datum  datum
2 datum datum datum  datum
2 datum datum datum  datum
2 datum datum datum  datum
Syntax:

GLM

ulvl ulv2 u2vl u2v2 BY a

/WSFACTOR = u 2 Polynomial v 2 Polynomial

/METHOD = SSTYPE (3)

/PRINT = DESCRIPTIVE HOMOGENEITY

/CRITERIA = ALPHA(.05)

/WSDESIGN = u Vv u*v

/DESIGN = a .

Using the menus, choose Analyze — General Linear Model — Repeated M easures. Define
the within-subjects factors (with their numbers of levels). Then you can assign individua vari-

ables (e.g. U1V1) to appropriate levels of the factors, and assign the between-subjects factor.

One column, one variable:

A Subject U V depvar
1 1 1 1 datum
1 1 1 2 datum
1 1 2 1 datum
1 1 2 2 datum
1 2 1 1 datum
1 2 1 2 datum
1 2 2 1 datum
1 2 2 2 datum
2 3 1 1 datum
2 3 1 2 datum
2 3 2 1 datum
2 3 2 2 datum
Syntax:

UNIANOVA

depvar BY a subject u v

/RANDOM = subject

/METHOD = SSTYPE (3)

/INTERCEPT = INCLUDE
/PRINT = DESCRIPTIVE HOMOGENEITY

/CRITERIA
/DESIGN =

= ALPHA(.05)
a subject*a
u u*a u*s

ubject*a
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v v*a v*subject*a
u*v u*v*a u*vr*subject*a .

Incidentally, the notation subject (a) will be accepted as equivalent to subject*a in these sorts
of designs; feel freeto use this alternative form if it seems clearer:

UNIANOVA

depvar BY a subject u v

/RANDOM = subject

/METHOD = SSTYPE (3)

/INTERCEPT = INCLUDE

/PRINT = DESCRIPTIVE HOMOGENEITY

/CRITERIA = ALPHA(.05)

/DESIGN = a subject(a)
u u*a u*subject (a)
v v*a v*subject (a)

u*v u*v*a u*v*subject (a)

Not entirely trivial to accomplish with the SPSS menus. Using the menus, choose Analyze —
General Linear Model — Univariate. Enter A, B, U as fixed factors; enter Subject as a random
factor. Since SPSS will get the model wrong for ‘mixed’ models (by including S and al sorts of
terms in which the between-subjects factors interact with S), you then need to edit the Model
directly before running the analysis. Untick ‘Full factorial’ by ticking ‘Custom'. Enter the de-
sired terms, as listed above; the method is explained further in the section on the ‘two-between,
one-within" model.
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7.10 Other ANOVA designs with between and/or within-subjects factors

The models above can be extended along the same principles. See Keppel (1991), pp. 491-496. A full map of all the
‘error’ termsis given on p. 493; an expanded version showing all terms is presented here. For any term, the appropriate
error term is the next error term in the list. The different error terms needed for partial and full within-subjects models
are discussed by Howell (1997, pp. 487-488). Only full models are presented for designs involving between-subject
factors.

Between-subjectsfactors
None 1 factor (A) 2 factors (A, B) 3factors (A, B, C)
Design: - AXS AxBxS AxBxCxS
(%]
& Terms | - A A A
& error [= S/A] B B
% - AxB c
=| & error [= S/AB] AxB
2 2 AxC
é BxC
= AxBxC
2 error [= S/ABC]
Design: UxS) Ax(UxS) AxBx(UxYS) AXBxCx(UxS)
Terms: between subjectsterm [ between subjects: between subjects: between subjects:
U A A A
eror[=UXx S error S/A B B
AXxB C
within subjects: error S/AB AXxB
U AxC
UxA within subjects: BxC
— error U x S/A U AxBxC
=) UxA error S/ABC
S UxAxB
B error U x S/AB within subjects:
— U
UxA
UxB
UxC
UxAXB
UxAXxC
UxBxC
UxAXxBxC
error U x S/ABC
Design: UxV xS AxUxV xS AxBx(UxVxYS) AxXxBxCx((UxVxYS)
Terms: simpler model: between subjects: between subjects: between subjects:
A A A
between-subjectsterm [ error S/A B B
U AxB AxB
\% within subjects: error S/AB AxBxC
UxV U error S/ABC
error UxA within subjects:
error U x S/A U within subjects:
= full model (preferable): \Y UxA U
~ _ VxA UxB UxA
= between-subjects term [S] error V x S/A UxAxB UxB
5 (no corresponding error | 5/ error U x S/AB UxAxB
g term) UxVxA Vv error U x S/AB
~ v error Ux V x S/A V XA vV
error U x S V xB V XA
v VxAxB V xB
erorV xS error V x S/AB VXxAXB
UxV UxV error V x S/AB
erorUxV xS UxV xA UxV
UxV xB UxV xA
UxV XxAXxB UxV xB
eror UxV x S/AB UxVxAxB
eror UxV x S/AB
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3factors (U, V, W)

Design:

Terms:

UxVXxXWxS)
simpler model:

between-subjectsterm [S]
U

\Y

UxV

UxW

V xW

UxVxW

error

full model (preferable):

between-subjectsterm [S]
(no corresponding error
term)

U

error U x S

\Y

erorV x S

W

error W x S

UxV

errorUxV xS

UxW

error UxW x S

V xW

erorVxWxS

UxVxW

erorUxV xWxS

Ax(UxVxWxS)

between subjects:
A

error S/A

within subjects:
U
UxA
error U x S/A
V
V xA
error V x S/A
W
WxA
error W x S/A
UxV
UxV XA
error U x V x S/A
UxW
UxWxA
error U x W x S/A
V xW
VXWxA
error V x W x S/A
UxVxW
UxVXWxA
error U xV x W x
S/A

AxBx(UxVxWxS)

between subjects:
A

B
AxB
error S/AB

within subjects:

U

UxA

UxB

UxAXxB

error U x S/AB

\Y

V xA

V xB

VxAxXB

error V x S/AB

W

W x A

W x B

WxAXxB

error W x S/AB
UxV

UxV XA

UxV xB

UXxV XxAxB
eror UxV x S/AB
UxW

UxWxA
UxWxB
UxXxWxAXxB
error U x W x S/AB
V xW

VxWxA
VxWxB
VXxWxAXxXB
eror V x W x S/AB
UxV xW

UXV XWxA
UxV xWxB
UXxVXxXWxAXB
error U xV x W x S/AB

AxBxCx(UxVxWxYS)

between subjects:
A

B

C

AxB

AxC
AxBxC
error S/ABC

within subjects:

U

UxA

UxB

UxC

UxAXB
UxAXxC
UxBxC
UxAXxBxC
error U x S/ABC
\Y

V xA

V xB

VxC

VxAXxXB
VxAxC
VxBxC
VxAxBxC
eror V x S/ABC
W

W x A

W x B

WxC

W xAXxB
WxAXxC
WxBxC
WxAXxBxC
error W x S/ABC
UxV

UxV XA

UxV xB
UxVxC

UxV XxAXxB
UxVXxAXxC
UxVxBxC
UxVXxAxBxC
error U x V x S/ABC
UxW
UXxWxA
UxWxB
UxWxC
UxWxAXxXB
UXxWxAxC
UxWxBxC
UxXxWxAxBxC
error U x W x S/ABC
V xW
VxWxA
VxWxB
VxWxC
VXxWxAXB
VXxWxAXxC
VxWxBxC
VXWxAxBxC
error V x W x S/ABC
UxV xW

UXV XWxA
UxV xWxB
UxVXxWxC
UXxVXWxAXB
UxXxVXWxAxC
UxVXxWxBxC
UXxVXWxAxBxC
error UxV xW x S/ABC
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7.11 One between-subjects covariate (linear regression)

Alternative names

Example

e Analysis of covariance (ANCOVA) — though traditionally this term isn't applied to a de-
sign with no other factors
e Linear regression

Y ou measure subjects income (dependent variable) and want to predict it in the basis of their
Q. Every subject contributes an single (1Q, income) pair of values. This is basic linear regres-
sion. In regression terminology we would be trying to predict the dependent variable Y from the
another, predictor variable X — i.e. solving the regression equation

Y=bX+a
_Covyy Sy VS5
Whereb_—z_r—_r—
Sx Sx / SSx

and a=y—-bx

where Y is the predicted value of Y (see also Myers & Well, 1995, p. 387). Alternatively, we
could writethis:

Y=bX +a+e¢

where ¢ symbolizes the error or residual. The equation represents, of course, this:
100 -
80 -

60 -
a —>

intercept 401 . slope
> ) = Ay/Ax &
-------- Y=bX+a Ax

‘Regression of Y on X’
Predicted values of Y lie on this line.

20 A

0

0 20 40 60 80 100
X

Or we could lay out the equation so as to be extensible to multiple regression (which we'll 1ook
at later):
Y=by+bX+e

In ANCOVA terminology, the predictor variable is the covariate, which we'll call C. So we
could first rewrite the simple linear regression equation with the letters we'll use from now on:

Y =a+bC where a=Y —bC
and now writeit as a prediction for specific values of Y and C, namely Y; and C;:
Y, =a+bC, +& where a=Y —bC
and now write it terms of themeansof Y (=Y = x) and C(C ):

Y, =u~bC+bC +¢
=u+b(C -C)+e

(Compare Myers & Well, 1995, p. 436.) We'll use this below. It helps to distinguish between
the predicted value of Y based on the covariate [which is Y, =a+bC, = u+b(C, -C)] and
the contribution of the covariate, which is the deviation of the covariate-predicted value of Y
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from the overall mean of Y [which is therefore ¢ =b(C; —C) ]. Obviously, ¢; =\?i -U.

Note also that the proportion of the total variability in Y that’s accounted for by predicting it
from Cisequal tor%

2SN _ SSi
SSY Sstotal

and the SS attributabl e to the model (SSmege OF SSregression OF SSreg) CaN be written

SSreg = Z(YA| _Y_)2
:rZSSY
=b?SS,

depvar =C, + S
(I've made that up, as Keppel doesn’t have a specific notation for models including covariates.)
Yi=u+G e

where

e Y, isthe dependent variable for subject i

e s istheoveral mean

e G isthe contribution of the covariate for subject i: ¢ =b(C, —C) :\?i — i1 where b is the
regression coefficient, C; is the value of the covariate for subject i, C is the overall mean
value of the covariate, and \?, isthe value of Y; predicted by on the basis of the covariate.

e g iseverything else (the error, residual, ‘individual variation’, etc.): & =Y, —(u#+¢;)
SSeota = SSreg + SSaror

The SSe iS given by SS., =3(c)?=3b(C, —C)=3(Y, - 1) =SS, =b?SS. (Myers &
Well, 1995, p. 393). It's the sum of the squared contributions of the covariate, which is to say
the sum of the squared deviations between the covariate-predicted value and overall mean.

Covariates have 1 degree of freedom.

Source d.f. SS F

Ceov (regression) 1 SSc MS/M Saror
Error N-2 SSarror

Tota N-1 SSita

where N is the number of subjects.

Data layout:

C depvar
datum datum

datum datum
datum datum

Either run the analysis as aregression:

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
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/DEPENDENT depvar
/METHOD=ENTER c .

.. or asan ANCOVA (note use of WITH for covariates, rather than BY for factors):

UNIANOVA
depvar WITH c
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/PRINT = PARAMETER
/DESIGN = c .

Thiswill also give you r? for the model. The /prRINT - PARAMETER Syntax also gives you b; you
can combine \/r_2 with the sign of b to calculater.

Using the menus, choose Analyze — General Linear Model — Univariate; enter the depend-
ent variable and the covariate in the appropriate boxes.

x

i Univariate

Diependent Y ariable: Model...

o r—
Fixed Factor(s): CUD‘;@SI
’7 Flots.
FostHoe:

Random Factor(s):
Save,
Options...

Covariate[s):

L *
WLS Weight
l—
Ok | Easlel Easetl Eanca\l Help |

To get parameter (b) estimates as well, choose Options — Parameter estimates.
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7.12 One between-subjects covariate and one between-subjects factor

7.12.1. The covariate and factor do not interact

Alternativenames e  Analysisof covariance (ANCOVA)
e Analysisof covariance (ANCOVA) assuming homogeneity of regression
e Traditiona ANCOVA

Example After Howell (1997, p. 585). Suppose we are interested in whether small cars are easier to han-
dle. We can compare driving proficiency using three cars: small, medium, and large (A;, A,,
Az). One driver istested in only one car. We have three groups of drivers to test, but they vary
considerably in their driving experience (C.,). We have arranged matters so the mean driving
experience is the same in each group. If driving experience has a very large effect on perform-
ance, we may be unable to detect an effect of car type. So we can ‘partial out’ the effect of
driving experience (Cgy), increasing our power to detect an effect of car type (A).

More controversially, suppose that the mean level of driving experience was not the same for
the three groups. Then performing an analysis of covariance is like asking what the effect of car
type was had the groups not differed on the covariate. This may not make sense; see Howell
(1997, pp. 596-7) and Myers & Well (1995, pp. 449-454). For example, if you measure the ef-
fect of a drug on three-year-old and five-year-old children and covary for body weight, it may
make little sense to ask what the effect on three-year-olds would be if they weighed the same as
five-year-olds — they don't. Statistically controlling for the covariate is not the same as ex-
perimentally controlling for the covariate (Myers & Well, 1995, p. 452).

Even worse is the situation when you measure the covariate after the treatment (factor) has been
applied and the treatment has affected the covariate; it's then pretty difficult to interpret an
analysis of covariance meaningfully. See Howell (1997, pp. 596-7).

Notes Howell tends to refer to covariates as things that are accounted for or partialed out in advance
of consideration of other factors (Howell, 1997, p. 587; p. 606). This implies that the covariate
x factor interaction is not included, except to check the assumption of homogeneity of regres-
sion. Thisis a traditional meaning of ANCOVA; see the GLM section (p. 88—) for a full ex-
planation. SPSS refers to covariates in the sense of ‘continuous predictor variables' (as opposed
to factors, which are discrete predictor variables) but does follow Howell’ s approach when you
use covariatesin its ‘full model’ mode. | will refer to covariates in the sense of continuous pre-
dictor variables and try to make it explicit when covariates interact with factors or do not.

This model assumes that the covariate is independent of the experimental treatments. (If not, see
the ‘interacting’ version below.)

Let’ s take these data:

A Aa AL AL A A A A A A A
depvar (Y) 11 3 49 72 9 31 5 65 8 11

We might run aone-way ANOV A on it, using our standard partitioning of variance:

ANOVA
Contribution of A
12 A S‘Stotal SS A SS, error
10 4
.
8 1 A |
.
--x-- A2 mean | — '
> 69 ————— overall mean |I II ""lll"l + | |
-e--Al & .
44 mean | | |
° a
P
.
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But suppose we a so have information about a covariate C:

A Ar AL AL A A A A A A A
C 1 3 5 7 9 2 4 6 8 10
depvar (Y) 11 3 49 72 9 31 5 65 8 11

We might be able to get a much more powerful test of the effects of A if we removed the effect
of C. We could, for example, correlate Y with C for all 10 data points, obtain predicted values
of Y based on C, obtain the residuals and see what effect A has on those. We could therefore
split the SS like this:

SSiota = SSregression(overall) + SSresidual
where SSeesgua = SSa + SSerror

That'd look like this:

1: contribution of the covariate, C
12 .esé\o\\ S8, = + S,

total regressmn residual or' ro/a/(adj)
A%

W“mm /Fﬂ /

2: contribution of A to what’s left
(note change of scale)
0.8

SSI()lal(adj) - SSA(adj) + ggcrrz)/ r(adj)

This is almost, but not quite,
what an ANCOVA does.

A
06 a

044

o
E
2
>
@
£
]

024

00—
: 2 [
1l e
0. A
a

©

°

(note different scale)

o

0.4

Y residuals after

06

Thisisalmost what one-way ANCOV A does. However, the regression line used is not quite the
‘overall’ regression (Myers & Well, 1995, pp. 436-439). To see why, consider these data:

A Al AL AL AL AL A A A A A
C 1 3 5 7 9 2 43 6 8 10
depvar (Y) 11 35 49 6 9 81 105 115 16 16

Here, if we calculated the regression line using all the data lumped together, we wouldn’t get as
good afit asif we fitted separate regression lines for each A group (one line for A;, another for
A>,). But the ANCOVA model we are using assumes homogeneity of regression — that is, that
the A; and A, data may have different intercepts but they have the same dope. How do we es-
timate this slope? Apparently (Myers & Well, 1995, p. 438) the best estimate of what’s called
the pooled within-group slopeisthis:

bs/a=Y Sc/a ba _ Sein ba, T b, + -

i SSS/ A(C) SSS/ A(C) SSS/ A(C)

where b, isthe slope calculated just for observationsin group A;
and SS;, 5 isthevariance of C for observationsin group A,
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and SSg; p(c) =X SS¢/ 4
1

For example, with the data set above,

SSc/a =40; SS¢,», =38.872
SSS/ A(C) = 40+ 38872 = 78872

bS/A=4—OO.915+ 40
78.872 78.872

1.081=0.997

We can then calculate the sum of squares for linear regression within groups, SSieqs/a). by
summing the variabilities accounted for by the regressions with the common slope in each of
the groups (Myers & Well, 1995, p. 439):
SSieg(sia) = bé/ASSC/A1 +b§/ASSC/A2 +..
= bé/ ASSc/ A(C)

... Inthis case, SSys/a) = (0.997)2 x 78.872 = 78.377. Since the within-group regression line
will pass through the within-group mean points {C, A ,VA } . we can sketch the situation:

~ N
< <
B~
S8
= R
NN
vV
NN
o 0O

18 4 18 q
16 16
14 14 -
12 4 12 Y mean for A2
10 A 10 A
>

8 8 -
6 6 1
4 4 Y mean for Al

J s ]

',.'%{9 %ﬂ : O group Al
29 e A group A2 2 1
o e b
0 a

0 — T T 0 T T T T T

0 2 4 6 8 10 0 2 4 6 8 10

Cc Cc

The two regression lines have identical slope;
this slope is the pooled within-group slope, bg,.

Finally, we can partition the variance like this:

SSiotal = SSoverall regression T Ssadjusted total
SSita = SSa + SSy/a
SSy/p = SSWithin—group regression, reg(/A) T Ssadjusted /A

SSagjusted total = SSagjusted A T SSagjusted /A

which looks like this (!):
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SS Aadjusted)
18 1 SStotal SSoverall regression SSadjusted total
16 A A A
14
12
10
>
s
6 o
44
2
0 . Prediction from C only Used as the SS for A
o 2 4 6 8 10
c
SSa SSuariability in Y about A subgroup means, SIA(Y) SSwithin-group regression, reg(SIA) SSadjusted s/
18 4 (uses pooled within-group slope)

Used as the SS for the covariate

Combined prediction
from Cand A

As aresult, the quoted SSyyaiae (= SSieys/a)), quoted SSa (= SSa agjusted):
SSqjusted s7a) WON't add up t0 SSya.-

depvar =Coy + AX S

Used as the error term

Arrows denote that the sum
of squares for P is the sum
of squares for Q plus the
sum of squares for R, i.e.
$Sp = 8Sq + SSk.

and quoted error (=

(I've used the notation ‘+' to separate out things that don’t interact with anything... this seems

reasonably consistent.)

Essentially, the model is
Yij =U+G +aj+&
where
e Y isthe dependent variable for subject i in condition A,
w1 isthe overall mean of Y
¢ isthe contribution of the covariate for subject i
a; isthe contribution from aparticular level (level j) of factor A

varigtion’, etc.): & =Y, — (4 +¢ + ;)

&; is everything else (the error in measuring subject i in condition j, residual, ‘individual

And everyone claims this is their model (Myers & Well, 1995, p. 436; Howell, 1997, pp. 588-
590); see aso Keppel (1991, pp. 308-317). However, what's actually going on is a bit more
sophisticated — there’s are two definitions for ¢; and «;, depending on what we want to test.
What actually happens is this (best explained by Myers & Well, 1995, pp. 440-444; but also by

Howell, 1997, pp. 590-1):

e We can view any ANOVA hypothesis test as a comparison of two models. For example, a
simple one-way ANOVA is a comparison of a full model that incorporates the effect of a
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factor A (Y = i+ +¢&;) with a restricted model that doesn’'t — in this case, the re-

stricted model is Y, = + ¢ .

Contrasting two models. The correct way of contrasting a full (F) model and a restricted
(R) model isto usethisF test (Myers & Well, 1995, p. 441):

F _ (Sserror(R) - SSerror(F) ) - (dferror(R) - dferror(F) )
(dfaror(R)_dferror(F) )’dfaror(F) -

SSerror(F) - dferror(F)

Or, we could rewrite that, sSince SSiia = SSimodd + SSerror aNd dfigia = Afioge + Afarror:

= _ (SSmodel(F) _SSmodel(R) )+ (dfmodd(F) _dfmodel(R))
(dfmodei(F)—dfmodei(R) )'dfaror(F) -

SSerror(F) - dferror(F)

For a one-way ANOVA, this formula reduces to F = MS,/MSg/,, our usual formula for
testing the effects of A — see p. 86— in the section on GLMs. An alternative formulation
uses the R? values for each model (Howell, 1997, p. 578): if f and r are the number of pre-
dictorsinthe full and reduced models,

R
f—-r,N-f-17— (f—r)(l—R?) .

Now we apply that principle to ANCOVA.

To test the effects of the factor A, one model is calculated testing just the effect of the

covariate C. That model is our usual regresson ANOVA model, Y; = £+ ¢ + & , whereu is

the overall mean and ¢; is the contribution of the covariate, calculated using the overall re-

gression (¢, =b(C, - C)) — since in this model we have no information about which level

of A agiven subject is at, so we can’'t calculate the pooled within-groups slope yet. Then
we calculate another model including the factor A. That model is Y; =u+¢ +; +¢j,

where ¢; is the extra contribution of the factor. And knowledge of that factor alows us to
improve our regression as well, because it allows us to calculate two regression lines with
the same dope (the pooled within-groups slope, be/s) but different intercepts (Myers &

Well, 1995, p. 442). So the extra contribution is ¢ =Hp, +bg/ A (Cy —5Aj )—-(u+¢c).We

compare those two models.

Totest the effects of the covariate C, one model is calculated testing just the effect of the
factor A. That model is our usual one-way ANOVA model Y = i+« +¢; , where u isthe
overall mean and ¢; is the contribution from a particular level (level j) of the factor
(o =u A —H ). Then we calculate another model including the covariate C. That model is

Yij = 4+ +a; +&;, where ¢ is the extra contribution of the covariate, using the pooled
within-groups slope (i.e. using the information about which subject is at which level of
factor A),i.e. ¢; =bg,A(Cjj — C, A ) - We compare those two models.

The complicated picture above showsthis. The top row — partitioning SSig iNt0 SSyveral
regressions SSA(adjusied)y &NC @n error term, corresponds to testing the effects of A over and
above those of the covariate. The middle row — partitioning SSy iNt0 SSa, SSuithin-group re-
aression, @Nd an error term, corresponds to testing the effects of C over and above those of the
factor.

Since the covariate and the factor may be correlated (provide mutual information),
the questions ‘what does A do?" and ‘what does C do?’ are not independent; we there-
fore ask ‘what does A do, over and above the effects of C? and ‘what does C do, over and
above the effects of A?

See above.
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ANOVA table Covariates account for 1 degree of freedom.
Source d.f. SS F
Ceov 1 SSiey(s/a) MSeeqs/a)/ M Ss/a adjusted
A a-1 SSa ajusted M Sa ajusted’ M Ss/a ajusted
Error N-a-1 SSy/ adjusted
Tota N-1 SSo

where N is the number of subjects and a the number of levels of factor A.

Note that the SS componentsfor C, A, and error do not add up to SS,i5. Thisis confusing;
the method of partitioning is described above.

Correlation See discussion under the ‘one within-subjects covariate’ model (p. 152) for details of how to
coefficient from obtain correlation coefficients (r, r%) and parameter estimates (b) from ANCOVA.
ANCOVA
SPSStechnique Data layout:

C A depvar

datum 1 datum

datum 1 datum

datum 1 datum

datum 2 datum

datum 2 datum

datum 2 datum

Syntax:
UNIANOVA

depvar BY a WITH c
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = c a .

Using the menus, choose Analyze — General Linear M odel — Univariate. Enter A asafixed
factor. Enter C,, as acovariate.

x

= Univariate

\:I Diependent ' ariable: Model...
# depvar
Contrasts.
Fired Factor(s): g
\:I @ a Plote...
Randam Factor(s):
Save.

\:I Dptions...

LCoveaniate(s]:

Ly
\:I WLS Weight:
’7

(1] ‘ Easle| Eeset‘ Cance\| Help ‘

Note that the interaction term (Co, X A) is not included in this model — see below for a version
with the interaction.
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7.12.2. The covariate and factor interact

Alternative names

Example

Notes

Model description

Model

e Anaysisof covariance (ANCOVA) alowing covariate x factor interaction
e Analysisof covariance (ANCOVA): full model to check homogeneity of regression
e Homogeneity of slopes design ANCOVA (see p. 88—)

Rats receive sham surgery (A,) or lesions of the nucleus accumbens core (A,). They are then
trained in atask in which they may press a lever freely; each lever press produces a pellet some
time later. For each rat, we measure the mean time between pressing the lever and receiving the
pellet (Ceov; One value per subject). This is a continuous variable. We also measure their learn-
ing speed (dependent variable). Does the learning speed depend on the delay each rat experi-
enced (main effect of C,)? Does the learning speed depend on the group they were in (main
effect of A)? Does the way the learning speed depends on the delay depend in turn on which
group they were in (Ceoy X A interaction)?

Note the interpretative difficulties (discussed above) that can plague any ANCOVA if you don't
think things through very carefully.

Allows the covariate to interact with the factor — that is, allows for the possibility that the ef-
fects of the factor differ depending on the value of the covariate, or (equivalently) that the ef-
fects of the covariate differ depending on the level of the factor. See above for a non-interaction
version.

Howell (1997, pp. 587-590) discusses the approach to a standard ANCOVA that assumes ho-
mogeneity of regression (that the regression coefficients are equal across levels of the factor, i.e.
that there is no covariate x factor interaction). We discussed this ‘reduced model’ ANCOVA in
above (p. 138). Howell (1997, pp. 587-590) uses the ‘full’ model, which includes the interaction
term, to test the assumption of homogeneity of regression before using the ‘reduced model’.
However, there are times when we are interested in the interaction term for its own sake (see
Example above).

depvar = Ceoy x A X S

Yij =U+C +a;+ca +§

where

e Y isthe dependent variable for subject i in condition A,

o uistheoveral mean

e ¢ isthecontribution of the covariate for subject i

e g isthe contribution from aparticular level (level j) of factor A

e cgj istheinteraction of the covariate for subject i with level j of factor A

e ¢ is everything else (the error in measuring subject i in condition j, residual, ‘individual

variation’, etc.): & =Y, — (1 +¢ +a; +Cayy)

Just as before, we can’t define ¢, o; and so on in just one way, since they may be correlated.
WEe Il have to ask what the covariate contributes over and above the factor, and so on.

The test for the interaction term (Myers & Well, 1995, p. 447; Howell, 1997, p. 588-590) in-
volves the comparison of a full model in which the regression slopes can differ for each group,
or level of A (so the regression slopes are bAj ):

Y” =/1+6UJ +bAj (CU _6Aj )+8|]

and arestricted model in which each group has the same slope:

Approach 1: testing the homogeneity of regression assumption. Test the interaction term as
above (i.e. perform an ANCOV A including the factor x covariate assumption). If the interaction
term is not significant, the dopes don’t differ. Drop the interaction term out of the model and
perform your usual ANCOVA (factor, covariate, no interaction) safe in the knowledge that the



Sources of variance

ANOVA table

Correlation
coefficient from
ANCOVA

SPSStechnique

7. Specific designs 145

assumption of homogeneity of regression is valid. This is why most textbooks test this interac-
tion (Myers & Well, 1995, p. 450; Howell, 1997, p. 588-590).

Approach 2: asking about the factor x covariate assumption for its own sake. Perform the
full analysis with the interaction; interpret that directly. Interpretation of any main effects in the
presence of an interaction may be tricky, asit is in factorial ANOVA (Myers & Well, 1995, p.
450).

SSc, SSa, SScxas SSeror--- but these may not be independent, so they won't necessarily add up
to SSua — See above.

Covariates account for 1 degree of freedom.

Source d.f. SS F

Ccov 1 SSC M SC/ M Serror
A a-1 SSA “AS%/“ASer
Ccov x A a-1 SSCXA M SC><A/ M Serror
Error N-2a SSaror

Tota N-1 SSota

where N is the number of subjects and a the number of levels of factor A.

See discussion under the ‘one within-subjects covariate’ model (p. 152) for details of how to
obtain correlation coefficients (r, r’) and parameter estimates (b) from ANCOVA.

Data layout:
C A depvar
datum 1 datum
datum 1 datum
datum 1 datum
datum 2 datum
datum 2 datum
datum 2 datum
Syntax:
UNIANOVA

depvar BY a WITH c
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = c a c*a .

Note that the interaction term (Ccoy, x A) isincluded.

Not entirely trivial to accomplish with the SPSS menus. Using the menus, choose Analyze —
General Linear Model — Univariate. Enter C as a covariate. Enter A as a fixed factor. By de-
fault, SPSS will not include the C,, x A interaction. So you need to edit the Model directly be-
fore running the analysis. Untick ‘Full factorial’ by ticking ‘Custom’'. Enter the desired terms
(inthiscase C, A, Cx A).
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7.13 One between-subjects covariate and two between-subjects factors

Alternative names

Example

Notes

Model description
(S= subjects)

Model

Sources of variance

ANOVA table

Correlation
coefficient from
ANCOVA

e Factoria analysis of covariance (factorial ANCOVA)

Suppose we are again interested in whether small cars are easier to handle. We can compare
driving proficiency using three cars: small, medium, and large (A1, A,, Az). One driver is tested
in only one car. We have three groups of male drivers (B,), and three groups of female drivers
(B,), which we assign to our three cars in a standard factorial design. We also want to account
for variation in driving experience (C.; one value per subject).

There's nothing to stop you including covariate x factor interactions in your model, though we
won'’t present them here.

The general linear model will also be perfectly happy for you to include covariate x covariate
interactions, if you think that’s meaningful. Think carefully, though; this would be a complex
design! We won't present that here.

More detailed discussion of this designis given by Myers & Well (1995, pp. 457-459).

depvar =C,y, +tAXB xS

Yik =H+C +aj + Sy +off + ik

where

Yij« is the dependent variable for subject i in condition A;, B

u isthe overall mean

¢; isthe contribution from covariate C for subject i

g is the contribution from a particular level (level ) of factor A

P« isthe contribution from a particular level (level k) of factor B

afi isthe contribution from the interaction of level j of factor A and level k of factor B

&jk 1S everything else (the "uniqueness’ of subject i in condition j of factor A and condition k
of factor B, ‘error’, ‘individual variation’, etc.).

However, since the predictors may be correlated, there is no ‘unique’ way to define the contri-
butions of each of these components (see above).

As the sources of variance may not be independent, the components (SS¢, SSa, SSg, SSag, SSe-
ror) May Not add up to SSyy; See above.

Source df. SS F

Coov 1 SSc MSc/M Serror
A a-1 SSa MSa/MSqror

B b-1 SSs M S/ M Serror
AXxB (a—l)(b—l) SSaxe M SAXB/M Serror
Error ab(n-1)-1 SSaror

Tota N-1 = abn-1 SSota

where a is the number of levels of factor A, etc., N is the total number of observations (sub-
jects), and n isthe number of subjects (or ‘replications’) per cell.

See discussion under the ‘one within-subjects covariate’ model (p. 152) for details of how to
obtain correlation coefficients (r, r%) and parameter estimates (b) from ANCOVA.
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Data layout:
depvar A B C
datum level 1 level 1 datum
datum level 1 level 1 datum
datum level 1 level 2 datum
datum level 1 level 2 datum
datum level_2 level_1 datum
datum level_2 level_1 datum
datum level_2 level_2 datum
datum level_2 level_2 datum
Syntax:
UNIANOVA

depvar BY a b WITH c
/METHOD = SSTYPE (3)

/INTERCEPT =
/CRITERIA = ALPHA(.05)
/DESIGN = ¢ a b a*b .

INCLUDE

7. Specific designs
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Using the menus, choose Analyze — General Linear Model — Univariate. Enter A and B as

between-subjects factors. Enter C as a covariate.
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7.14 Two or more between-subjects covariates (multiple regression)

Alternative names

Example

Notes

Model description
(S= subjects)

Model

Sources of variance

ANOVA table

e Multipleregression
e Multiple linear regression

Suppose we want to predict marks in undergraduate exams on the basis of A-Level points (Ay)
and 1Q (Beo)-

See Howell (1997, p. 510 on) for a discussion of multiple regression, and Howell (1997, pp.
605-606) for a discussion of the use of multiple covariates.

A standard multiple regression solves the equation
\?=b0+blxl+b2X2+...+prp

where by is the intercept and by, by, ... by, represent the regression coefficients (slopes) for the
predictors Xy, Xy, ... X, respectively. In general, as for linear regression, this equation is solved
so asto perform least-squares regression, i.e. to minimize

(Y -Y)?

However, if the two covariates are themselves correlated, there will be a problem of interpreta-
tion of effects involving one or other of them (because we will have non-orthogonal sums of
squar es, as discussed earlier in the context of unequal group sizes, see p. 70— and p. 97—).

Ceov+ Deoy + ... XS
For the two-covariate case, Coy + Deoy + S.

To achieve standard multiple regression, in the two-predictor case, the multiple regression
equation above leads us to this model in our usual ANOV A notation:

Y =p+C +0d +¢
where
e Y, isthe dependent variable for subject i
u isthe overall mean
¢; isthe contribution from covariate C for subject i
d; is the contribution from covariate D for subject i
& iseverything else (the error in measuring subject i, residual, ‘individual variation’, etc.).

However, since the predictors may be correlated, there is no ‘unique’ way to define the contri-
butions of each of these components (see above).

The Cg, X Doy interaction is not included for conventional multiple linear regression.
For the two-covariate case, if the covariates are independent, then SSiq = SSc + S + SSaror-
But if the covariates are themselves correlated, the contributions of each won't necessarily add

up to thetotal (Myers & Well, 1995, pp. 505-508).

Covariates account for 1 degree of freedom each. For the two-covariate case,

Source d.f. SS F

Ceov 1 SSc MSc/M Sqrror
Deov 1 SS MS5/M Suror
Error N-3 SSarror

Total N-1 SSota

where N is the number of subjects.
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See discussion under the ‘one within-subjects covariate’ model (p. 152) for details of how to
obtain correlation coefficients (r, r’) and parameter estimates (b) from ANCOVA. See discus-
sion of effect size (p. 97—) to see how to interpret them.

Datalayout:

C D depvar
datum  datum datum
datum  datum datum
datum  datum datum
datum  datum datum
datum  datum datum
datum datum datum

Either perform the analysis as a multiple linear regression (Analyze — Regression — Linear;
enter C and D as the independent variables), which gives this syntax:

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT depvar
/METHOD=ENTER c d .

Or run it as an ANOVA (Analyze — General Linear Model — Univariate; enter C and D as
covariates), which givesthis syntax:

UNIANOVA
depvar WITH c d
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = c d .

Note that the interaction term (C.,, X Do) is not included. You could include it if you wanted
— the software won’t complain — but you’d have to think very carefully about its interpreta-
tion.
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7.15 Two or more between-subjects covariates and one or more between-subjects factors

Alternative names

Example

Notes

Model description
(S= subjects)

Model

Sources of variance

ANOVA table

Correlation
coefficients and
effect sizes

e Factoria analysis of covariance (factorial ANCOVA) with multiple covariates

Modifying Howell’s (1997, pp. 605-6) example slightly, suppose we want to look at the effect
of two teaching styles (A) and two classroom temperatures (B) on student performance using a
factorial design. We might also want to partial out the effect of age (Cg) and 1Q (D). NO
problem — statistically, at least.

There's nothing to stop you including covariate x factor interactions in your model, though we
won't present them here.

The general linear model will also be perfectly happy for you to include covariate x covariate
interactions, if you think that’s meaningful. Think carefully, though; this would be a complex
design! We won't present that here.

Asin the previous design, if the two covariates are correlated, there will be a problem of inter-
pretation (because we will have non-orthogonal sums of squares, as discussed earlier in the
context of unequal group sizes; see p. 70— and p. 97—).

Designs with more than one covariate are briefly discussed by Myers & Well (1995, p. 459), as
ispolynomial ANCOVA (Myers & Well, 1995, p. 460); see also p. 88—.

Following our example, we'll illustrate a two-covariate, two-factor model:
depvar = Cpy + Doy +t AXB X S

Yik =4 +C +d +a; + B+ o + &

where

Yij« is the dependent variable for subject i in condition A;, By

w1 isthe overall mean

G; isthe contribution from covariate C for subject i

d; isthe contribution from covariate D for subject i

a; isthe contribution from a particular level (level j) of factor A

Pk isthe contribution from a particular level (level k) of factor B

afi is the contribution from the interaction of level j of factor A and level k of factor B

&k is everything else (the *uniqueness’ of subject i in condition j of factor A and condition k
of factor B, ‘error’, ‘individual variation’, etc.).

However, since the predictors may be correlated, there is no ‘unique’ way to define the contri-
butions of each of these components (see above).

Asthe sources of variance may not be independent, the components (SS¢, SSp, SSa, SSg, SSag:
SSaror) May not add up to SSi; See above.

Source d.f. SS F

Ccov 1 SSC M SC/ M Serror
Deov 1 SS MSp/M Seror
A a1 SSA M SA/ M Serror
B b-1 SSs M S/ M Serror
AXxB (a_l)(b_l) SSAXB M SAXB/M Serror
Error ab(n-1)-2 SSaror

Total N-1 = abn-1 SSiotal

where a is the number of levels of factor A, etc., N is the total number of observations (sub-
jects), and n isthe number of subjects (or ‘replications’) per cell.

See discussion under the ‘one within-subjects covariate’ model (p. 152) for details of how to
obtain correlation coefficients (r, r’) and parameter estimates (b) from ANCOVA. See discus-
sion of effect size above (p. 97—) to see how to interpret them.
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Data layout:
depvar A B C D
datum level 1 level 1 datum  datum
datum level 1 level 1 datum  datum
datum level 1 level 2 datum  datum
datum level 1 level 2 datum  datum
datum level 2 level 1 datum  datum
datum level 2 level 1 datum  datum
datum level 2 level 2 datum  datum
datum level 2 level 2 datum  datum
Syntax:
UNIANOVA

depvar BY a b WITH c d

/METHOD = SSTYPE (3)
/INTERCEPT =
/CRITERIA = ALPHA(.O05)
/DESIGN = ¢ d

INCLUDE

a b a*b .

7. Specific designs
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Using the menus, choose Analyze — General Linear Model — Univariate. Enter A and B as

between-subjects factors. Enter C and D as covariates.
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7.16 One within-subjects covariate

Alternative names

Example

Notes

Model description
(S= subjects)

Model

Sources of variance

ANOVA table

e  Multiple regression with the covariate and Subject as predictors

We measure gastric pH and PaCO, (partial pressure of arterial carbon dioxide) for a group of 8
subjects, making several measurements on each subject so we end up with 47 measurements
(see Bland & Altman, 19953a). Is there a relationship between PaCO, and pH? We must not
analyse this as if there were 47 independent observations. Subjects may vary widely in their
gastric pH and arterial PaCO,, yet there may be a consistent relationship within each subject
between the two, and thisis what we want to look at.

I've largely made up the model and sources of variance here, so | hope it's correct. It does
match Bland & Altman’s answer. Note that it is logically identical to the model we looked at
earlier with one between-subjects covariate and one between-subjects factor (the version in
which the covariate and the factor do not interact), except that our factor is now ‘subjects’ itself;
the only difference is that subjects is a random, not a fixed, factor. Data from Bland & Altman
(1995a); originally from Boyd et al. (1993).

7.5
7.0
I
%
(@]
6.5 ~~ Correct method (within-subjects ANCOVA) gives the within-subjects
O  correlation coefficient and slope (in this case, b = —0.108, r=—0.51,
o p = 0.001), which allows you to fit a line through each subject's mean
pH and mean PaCO,. The lines are parallel.
6-0 T T T 1
3 4 5 6 7

PaCO,
depvar = (Ceoy + S)

Y, =u+c +7m +¢&

where

e Y, isthe dependent variable for subject i

u isthe overall mean

G isthe contribution from covariate C for subject i

m; 1S the average contribution from a particular subject (subject i)

&jk 1S everything else (measurement error, intra-subject variation, etc.).

Sstotal = SSsubjects + SSC + SSerror

Source d.f. SS F

Between subjects  s—1 SSuibjects M Sabjects/ M Serror
C 1 S MSc/M Sqror
Error N-1-s SSerror

Totd N-1 SSotal

where N is the total number of observations and sisthe number of subjects.
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Note also that since if we are predicting a variable Y (calling the prediction Y ) we can express
r?in terms of sums of squares:

0. K
S5, S+ SSegdua

r

(see Correlation & Regression handout at www.pobox.com/~rudolf/psychology). If we re-
write this for our present case, C is the thing that makes the prediction. The total within-subjects
variation is what we're left with after we've accounted for between-subjects variation (= SSga
— SSujects = SSc + SSarer) @nd the variation accounted for by the prediction from C is SSc.. So
the proportion of the within-subjects variation accountable for by Cis:

o %
%—'—%TOT

This allows us to work out the within-subjects correlation coefficient from the ANCOVA table.
To obtain r itself, take the square root of r? and combine it with the sign of the regression coef-
ficient. To obtain regression coefficients in SPSS, tick Parameter estimates in the ANOVA
Options dialogue box, or add /prINT - PARAMETER tO your SPSS syntax. The regression coef-
ficient (slope) will appear inthe ‘B’ column and the row corresponding to the covariate.

Datalayout:
subject C depvar
1 datum datum
1 datum datum
1 datum datum
2 datum datum
2 datum datum
3 datum datum
3 datum datum
3 datum datum
3 datum datum
3 datum datum
4 datum datum

Syntax:
UNIANOVA

depvar BY subject WITH c
/RANDOM = subject

/METHOD = SSTYPE (3)
/PRINT = PARAMETER
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = ¢ subject .

Using the menus, select Analyze — General Linear Model — Univariate. Enter Subject as a
random factor and C as a covariate.
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7.17 One within-subjects covariate and one between-subjects factor

7.17.1. The covariate and factor do not interact

Alternative names

Example We give adrug (A,) or placebo (A,) to two groups of subjects to see if it affects their secretion
of growth hormone (dependent variable). The drug’s effects are known to last for days, and we
know that time of day (C) also affects growth hormone secretion — we believe there is a linear
relationship between time of day measured in a certain way and growth hormone levels. Each
subject only experiences either the drug or the placebo, but we measure each subject repeatedly
at severa different time points. We wish to ‘partial out’ the effects of time of day to have a bet-
ter chance of finding an effect of the drug.

(Note that our experimental design must ensure that there is no systematic relationship between
A and C, or interpretation will be well-nigh impossible — for example, it would be vital not to
mesasure the drug group in the evening and the placebo group in the morning.)

Notes

Model description  depvar = A X (Cgy + S) [but with no Ceo, x A term in the model]
(S= subjects)

Model | would guess either this:
Yij =4+0G+7j) +Cj + &
where
e Y isthe dependent variable for subject j in condition A,
o uistheoveral mean
e g;isthecontribution from level i of factor A
e 7y isthe average contribution from a particular subject (subject j), who is only measured in
condition A;
e i isthe contribution from covariate C for subject j
e g iseverything else (measurement error, intra-subject variation, etc.).

or this:
Yij =M+ +7j +C) +7Tj i + &
where
e uCy; isthe interaction of the covariate C with subject j (who is only measured in condition
Ay

e gjisredefined as ‘everything else’ in this new model

Should we include the subject x covariate interaction, C x S/A (alowing a different regression
slope for the covariate for each subject)? Maybe that depends on the situation. Obvioudly, to
include it, we must have multiple measurements for each subject. One approach, | suppose,
would be to test the full model and proceed to the simpler model if the subject x covariate inter-
action doesn’t contribute significantly. Including it will improve the power to detect effects of C
probably at the expense of power to detect effects of A (see below).

Sources of variance  The sources of variation (SSa, SSaror-beween: SSc, PErhaps SSeueza, and SSuror-witnin) May Not be
independent and may therefore not add up to SSyy.

ANOVA table If the effects of A and C are uncorrelated, the ANOV A table will look like this:
Source d.f. SS F
Between subjects: s-l=an-1
A a1 SSA M SA/M SS/A
error (S/A) a(n-1) SSy/a
Within subjects: (N-1)—(s-1) = N-s

Ccov 1 SSC M SC/ M Serror-within
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error-within N-s-1 SSarror-within

Alternative for within subjects (in the model with the C x S/A term):
Ccov 1 SSC M SC/ M Serror-wi'rhin
Ccov x S/A a(n_l) SS(><S/A M SC><S/A/ M Serror-within
error N_S_a(n_l)_l SSerror—wi'rhin

Totd N-1 SSota

where a is the number of levels of factor A and N is the total number of observations (= aun), n
is the number of subjects per group (where ‘group’ is defined by factor A), and s is the total
number of subjects.

Data layout:
A Subject C depvar
1 1 datum datum
1 1 datum datum
1 1 datum datum
1 2 datum datum
1 2 datum datum
1 2 datum datum
2 7 datum  datum
2 7 datum  datum
2 7 datum  datum
2 7 datum  datum
2 8 datum  datum
2 8 datum  datum

Syntax (using the notation subject (a) rather than the functionally equivalent subject*a for the
term S/A):

GLM
depvar BY a subject WITH c
/RANDOM = subject
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/PRINT = DESCRIPTIVE HOMOGENEITY
/CRITERIA = ALPHA(.05)
/DESIGN = a subject(a) c c*subject(a) .
or not...

Choose whether or not to include the C x S/A term... If you do include it, the C x S/A termis
calculated and itself assessed against the residual M S0, Whereas otherwise C x S/A is part of
the error term. This inevitably reduces the residual M S, and will therefore improve power to
detect effects of C (either as an effect of C or aC x S/A interaction), probably at the expense of
power to detect the effect of A.

One thing worth noticing: SPSS assesses MS, against a linear combination of MSe/ and the
residual (what it calls MSyor). YOu might think that it should be assessed only against MSg/p —
and thisiswhat it will do if A and C are totally uncorrelated. It's possible to force SPSS to do
this at any time with a custom hypothesis test using the syntax /TEST = a Vs subject (a). But
this may not be agood idea, because if A and C are partially correlated, SPSS tries to sort things
out. It calculatesits error terms using Satterthwaite's (1946) denominator synthesis approach. If
A and C are pretty much uncorrelated, you'll find that the linear combination it uses as its error
term is heavily weighted towards MSy/a (€.9. 0.97 X MSg/a + 0.03 X MSyo). If they're corre-
lated, the weighting will change (e.g. 0.239 x MSg/p + 0.761 X MSyo). And if A and C are
substantially correlated, your interpretation may be very difficult in any case.

In any case, the easiest way to think about the calculations going on in this sort of analysisisto
view each test as a comparison of two models (see section on GLMs, p. 84—). For example,
assuming we're using the usual method (SPSS's Type I11 sums of squares) for partialling out
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the effects of mutually correlated predictors, the test of the effect of C isatest of the difference
between a full model, including C, and a restricted model including every effect but C, and so
on for al the other terms.

Not entirely trivial to accomplish with the SPSS menus. Using the menus, choose Analyze —
General Linear Model — Univariate. Enter A as a fixed factor; enter Subject as a random fac-
tor; enter C as a covariate. Since SPSS will not give you the correct model by default (it will
include S), you then need to edit the Model directly before running the analysis. Untick ‘Full
factorial’ by ticking ‘ Custom'’. Enter the desired terms as listed in the ANOVA table.

7.17.2. The covariate and factor interact

Alternative names

Examples

Notes

Model description
(S= subjects)

Model

e Oneof my examples, so | do hope it's appropriate. Subjects are assigned to two groups (A
brain lesion, A, sham). They are given atask in which they have a choice between two lev-
ers. Lever A delivers asingle food pellet with probability p = 1. Lever B delivers four pel-
lets, but with a probability that ranges from 1 to 0.0625; the probability changes in steps
and the rats have an opportunity to experience the probability currently in force before they
choose between levers A (small, certain reward) and B (large, uncertain reward). The de-
pendent variable is the proportion of trials on which they choose lever B. We could analyse
these with two factors: A (group: lesion/sham; between subjects) and B (probability:
1/0.5/0.25/0.125/0.0625; within subjects). But since delivery of the large reward is un-
der the control of a random process, the probability experienced by the subjects may not
always match the programmed probability (e.g. if they have 10 trials and the programmed
probability is 0.5, it's perfectly possible that they get 3 rewarded and 7 unrewarded trials,
giving an experienced probability of only 0.3). So rather than using programmed probabil-
ity as a within-subjects factor, we could use experienced probability as a within-subjects
covariate (call it C). We can then ask whether the probability influenced choice (main ef-
fect of C), whether the lesion influenced choice (main effect of A), and whether the lesion
influenced the effect of probability (A x C interaction).

e Subjects are assigned to two groups (A; brain lesion, A, sham). They respond freely on two
levers, left and right, to receive food pellets. Both levers deliver food with an element of
randomness. Rats are tested for several sessions. Across sessions, the relative number of
pellets delivered by each lever varies. For each session, we calculate the proportion of re-
sponses allocated to the left lever — the relative response distribution (dependent variable)
— and the proportion of the total number of pellets that were earned by responding on the
left lever — the relative reinforcer distribution (C). Both are continuous, rather than dis-
crete, variables. Did the reinforcer distribution influence responding (main effect of C)?
Did the lesion influence responding (main effect of A)? Did the lesion influence the way
the animal s responded to the reinforcer distribution (interaction between C and A)?

In terms of the model, this is logically equivalent to the ‘one between-subjects factor, one
within-subjects factor’ design discussed earlier (g.v.). The computerized ANOV A process used
by SPSS, based on a general linear model (GLM), does not care whether predictor variables are
discrete (factors) or continuous (covariates), except in the way that it builds its default model
(which we need to override here).

depvar = A X (Ceoy X S)
Well, I'm making this up again; | would guess the full model would be essentially the same as
the ‘ one between, one within’ design discussed earlier (g.v.):
Yijk =4+ +7j i + C + Oy + 7Ty /i + Eijic
where
¢ Yk isthe dependent variable for subject j in condition A,

o uistheoveral mean
e g isthecontribution from a particular level (level i) of factor A
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ey is the contribution from a particular person or subject (subject j), who only serves
within condition A; (*subject within group’, or S/A)

e (Thereisno straightforward interaction of A with S: every subject is only measured at one
level of A, so this term would be indistinguishable from the subject-only effect z;;.)

e ¢ isthe contribution from the covariate C for subject j (call it C; for the moment)

®  aCi isthe contribution from the interaction of A; and C

e  7Cy is the contribution from the interaction of Cy with subject j (who only serves within
condition A;) — if you chooseto include it (see above)

* ik is everything else (the experimental error associated with measuring person j, who al-
ways experiences treatment A;, with covariate contribution Cy).

If A and C are uncorrelated, we could partition the variance like this:

SSiota = SSpetween subjects T SSwithin subjects
SSoetween subjects = SSA + SSS/A
SSyithin subjects — SSc + SScua + SScxs/a + SSarror
or if you don’'t include SSc,s/a, YOU' d just write the within-subjects bit like this:

SSyithin subjects — SSc + SScia + SServor

However, if A and C are correlated, the sources of variance will not be independent and will not
add up to SSqa-

If A and C are uncorrelated, the ANOV A table would look like this:

Source d.f. SS F

Between subjects: s-l=an-1
A a1 SSa MSa/MSs/a
error S/A a(n-1) SSg/a

Within subjects: N-s
Ccov 1 SSC M SC/ M Serror-within
Ceov XA a-1 SSca M Scaf M Sarror-within
Ccov x S/A a(n_l) SS(><S/A M SC><S/A/ M Serror-within
error-within N—s-an SSerror-within

Within subjects in amodel that doesn’t include Cg,, X S/A:

Ccov 1 SSC M SC/ M Serror-wi'rhin
Ccov x A a1 SS(><A M SCxA/ M Serror—within
error-within N-s-a SSarror-within

Tota N-1 SSiotal

where a is the number of levels of factor A and N is the total number of observations (= aun), n
is the number of subjects per group (where ‘group’ is defined by factor A), and s is the total
number of subjects.

Data layout:

A Subject C depvar
datum  datum
datum datum
datum datum
datum datum
datum datum
datum datum

RPRRPRRRER
NN R R R

datum  datum
datum  datum
datum  datum
datum  datum

NN
EENENEN|
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2 8 datum  datum

2 8 datum  datum
Syntax:

GLM

depvar BY a subject WITH c
/RANDOM = subject
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/PRINT = DESCRIPTIVE HOMOGENEITY
/CRITERIA = ALPHA(.05)
/DESIGN = a subject(a)
c c*a c*subject(a) .

or not...

Choose whether or not to include the C x S/A term... If you do include it, the C x S/A termis
calculated and itself assessed against the residual M S0, Whereas otherwise C x S/A is part of
the error term. This inevitably reduces the residual M S, and improves power to detect terms
involving C (that is, C, C x A, and C x S/A), probably at the expense of power to detect the
effect of A.

Note that SPSS calculates its error terms using appropriate linear combinations to deal with any
correlation between A and C (see above).

Not entirely trivial to accomplish with the SPSS menus. Using the menus, choose Analyze —
General Linear Model — Univariate. Enter A as a fixed factor; enter Subject as a random fac-
tor. Since SPSS will not give you the correct model by default (it will include S and not include
C x A), you then need to edit the Model directly before running the analysis. Untick ‘Full facto-
rial’ by ticking ‘ Custom'. Enter the desired terms as above.
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7.18 Hierarchical designs: two or more levels of ‘relatedness’ in measurement

7.18.1. Subjects within groups within treatments (S/G/A)

Alternative names

Example

Model

Sources of variance

Split-split plot design
Double-gplit design
Doubly-nested design
Hierarchical design
Bloody complicated

The simplest hierarchical design (Myers & Well, 1995, pp. 321): subjects (S) are tested in
groups (G). Different groups are assigned to different levels of some treatment (A). One subject
isonly ever in one group, and one group is only ever in one treatment. This design can be writ-
ten S/G/A (subjects within groups within treatments). Specific examples:

e Primary school pupils are taught in classes. We assign several classes to one teaching
method, several other classesto a different teaching method, and so on. One pupil isonly
ever in one class; one class only ever uses one teaching method. The design is pupils
within classes within teaching methods. Pupil and class are random factors.

e Different methods of rearing rats might be compared, with each rearing method being
applied to several litters of rats. (Rats within alitter are related genetically, so we should
take into account this potential source of correlation between scores of rats from the
same litter. Stating the same thing in a different way, two randomly-selected rats may
differ not only because they are different individuals, or because they experienced differ-
ent treatments, but because they come from different litters.) The design is rats within
litters within rearing methods. Rat and litter are random factors.

An individual score might be represented as Yy, where
i =1, 2, ... a(number of treatment levels)
i=1,2,...g(number of groups within atreatment level)

12,.

k=1, 2, ... n(number of subjectsin agroup)

Then
Yik =M+ + 7 + &
or
i = 4+ (5 — 1) + (e — 14) + Vi — 145)
i — 4= (i — 1) + (i — 14) + Vg — 457)
where

¢ Yisthe dependent variable in condition A;, G; for subject k
e uistheoverall mean
e ojisthecontribution fromlevel i of factor A (Aj): & = up —u and X5 =0.

ey isthe contribution from level j of group G in condition A; (G;)) relative to the mean of A;:
Vi =He —Mp and Ty =0.
* gjiseverything else (the deviation of subject k from its group mean Gy): & = Yij — 4;j -

If we sum and square both sides (and eliminate cross-product terms that sum to zero), we get:

ZTT (Vi —u)? =gy (u — 1)* + XY (uy — 11)° +EXT (Vi - u)?

i i i i

SSiota = SSa +SSg/a +SSsiia
Subject and group are random factors; A is afixed factor. We'd write the model like this:
Sstotal = Ssoetween—groups + SSWithin-groups
Ssoetween—groups = SSA + SS(3/A
SSNithin—groups = SSy/c/a
SSiota = SSa + SSe/a + SSe/e/a
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We would state G/A as ‘group within A’, and S/G/A as ‘ subject within group within A’, or
simply ‘subject within group’. Similarly,

Ofigra = dfa + dfc/a + dfs/ara

Source af. SS F
Between groups: ag-1
A a1 SSA M SA/ M SG/A
G/A a(g-1) SSe/a MSs/a/MSs/c/a
Within groups:
S/G/A ag(n-1) SSy/c/a
Tota N-1=agn-1 SSita

where N is the total number of observations and a, g, and n are as defined above. Note that the
error term for A isG/A, and the error term for G/A isS/G/A.

A G Subject  depvar
1 1 1 datum
1 1 2 datum
1 1 3 datum
1 1 4 datum
1 2 5 datum
1 2 6 datum
1 2 7 datum
1 2 8 datum
2 3 9 datum
2 3 10 datum
2 3 11 datum
2 3 12 datum
2 4 13 datum
2 4 14 datum
2 4 15 datum
2 4 16 datum

It doesn't matter if you use the same identifiers to code groups within different levels of A. For
example, you can call the A; groups ‘1" and ‘2" and the A, groups ‘3’ and ‘4’, as I’ve done
above — or you can call the A; groups ‘1’ and ‘2’ and the A, groups ‘1’ and ‘2" again. Since
the design ‘knows' that groups are nested within levels of A, it doesn’t care about how you label
them. (Of course, each group must have a unique name within each level of A.)

GLM depvar BY a g subject
/RANDOM = g subject
/DESIGN = a g(a) subject(g(a)) .

It's a common mistake to use an experiment with this kind of design but not to put the * Group’
factor into the analysis. People often analyse these kinds of data only taking into account the A
factor. That will generally overestimate the F ratio for A (give alower p value than it should)
(Myers & Well, 1995, pp. 325-7). On the other hand, if Group has few df, the value of MS; (=
SS; 7/ dfg) will be large and we will have low power to detect effects of A. The alternative
model isto ignor e the effect of G (what most people do without thinking about it):

SSta = SSa + SSy/a

where SSg/, is the pool of G/A and S/G/A. This is what you get when you run a one-way
ANOVA, ignoring the effect of G. In general, E(MSs/,) isless than E(MSg/a), SO you're more
likely to find a*significant’ effect of A (Myers & Well, 1995, p. 326). Myers & Well (1995, pp.
151, 327) recommend that you only pool (ignore the effect of G) when you’ve already run an
analysis with G included and this preliminary test of the effect of G was not significant at the a
= .25 level, and you have prior reason to believe that the things you' re pooling over reflect only
chance variability (in this case, that you have prior reason to think that groups don't differ sys-
tematically).
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As Myers & Well (1995, p. 339) put it, ‘wishing some variance component [e.g. G] to be zero
does not make it so, and the price of wrongly assuming that the component is zero is ordinarily
aType 1 eror in testing treatment effects of interest [i.e. declaring the effect of A to be signifi-
cant whenitisn't].

If you can’'t legitimately pool, then you need to have a high value of g (many groups), so you
get high dfg/, and therefore low MSg/a, and therefore good power to detect effects of A (which
uses MSg/a asits error term). This should be fairly obvious, although many people fail to real-
izeit: if one primary school classis taught using one method and another is taught using another
method, is a difference in class means due to different methods (A) or to difference in the per-
sonal interactions within the two classes (G)? They’ re confounded.

7.18.2. Groups versusindividuals

If you need to compare the effects of being in a group (‘group’ condition) to the ef-
fect of not being in a group (‘individual’ condition), there is a specia analytical
technique (Myers & Well, 1995, pp. 327-9). For example, if 15 students study a
topic individually, while another 15 students study the topic in five discussion
groups of three, you can analyse the effect of being in a group. Thisis afairly com-
mon problem in social psychology.

7.18.3. Adding a further within-group, between-subjects variable (S/GB/A)

Example

Model

Sources of variance

Subjects (S) are part of groups (G). Within each group, subjects are either anxious or not (anxi-
ety: B). Sets of groups are given different treatments (A). So G is crossed with B (all groups
have anxious and non-anxious subjects;, anxious and non-anxious subjects are found in all
groups) but subjects are nested within GB (a subject is only part of one group and is either anx-
ious or not) and groups are nested within treatments. The model can be written S/GB/A (or
S/BG/A).

Anindividual score might be represented as Y;q, where

i=1,2,...a(number of A treatment levels)
j=1,2, ... b(number of B levels within a group, or within atreatment level)
k=1, 2, ... g (number of groups within a treatment level)
=1, 2, ... n(number of subjectsin agroup)
Then

Yik =H+a; + 7+ B + o+ Wi + i
There are no interactions involving subjects (because subjects cross with none of the other three
variables: one subject only ever experiences one level of G, B, and A). G does not cross with A,
so thereisno AG or ABG term.

Subject and group are random factors; A and B are fixed factors. We'd write the model like this:

SSotal = SSoetween—groups + Svaithin-groups
SSoetween—groups =SS5 + SSe/a
Svaithin-groups =SS + SSag + SSea/a + SSy/ce/a
SSiota = SSa + SSg/a + S5 + SSag + SSga/a + SSy/ce/a

We would state G/A as ‘group within A’, and S/G/A as *subject within group within A’, or
simply ‘subject within group’. Similarly,

Ofigia = dfa + dfc/a + dfg + dfag + dfge/a + dfs/cera
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Source df. SS F

Between G: ag-1
A a—l SSA M SA/M SS/A
G/A a(g-1) SSe/a

Within G: ag(bn-1)
B b—l SSB M SA/M SSB/A
AB (a—l)(b—l) SSAB M SAB/M SSB/A
GB/A a(g-1)(b-1) SSea/a MSge/a/M Ss/ce/a
S/GB/A gba(n—l) SSy/ce/A

Tota N-1=agbn—-1 SSita

where N is the total number of observations and a, g, and n are as defined above. Note that the
error term for A is G/A, and the error term for G/A is S/G/A.

A G B Subject  depvar
1 1 1 1 datum
1 1 1 2 datum
1 1 2 3 datum
1 1 2 4 datum
1 2 1 5 datum
1 2 1 6 datum
1 2 2 7 datum
1 2 2 8 datum
2 3 1 9 datum
2 3 1 10 datum
2 3 2 11 datum
2 3 2 12 datum
2 4 1 13 datum
2 4 1 14 datum
2 4 2 15 datum
2 4 2 16 datum

See the notes about group coding above.

GLM depvar BY a g b subject
/RANDOM g subject
/DESIGN a g(a)
b a*b g*b(a) subject(g*b(a)) .

That seems to work (Myers & Well, 1995, p. 332, but note their typo for the F value for the
effect of B).

7.18.4. Adding a within-subjects variable (US/GB/A)

Example

Model

Sources of variance

We take the previous model to begin with: subjects (S) are part of groups (G). Within each
group, subjects are either anxious or not (anxiety: B). Sets of groups are given different treat-
ments (A). Now we measure each subject four times (trial: U). U is crossed with S (since every
subject experiences al four trials). So our design can be written US/GB/A (Myers & Well,
1995, p. 333).

See sources of variance below, which follow directly from the model and are easier to grasp.

The previous model describes the between-subjects variability. We just need to add within-
subjects terms — U, and the interaction of U with each of the between-subjects sources from
the last model:

Sstotal = Ssoetween—groups + SSWithin-groups
Ssoetween—groups = SSA + SS(3/A
SSWithin—groups = stithin-groupsrbe(ween—wbjects + stithin—subjects
SSNithin-groupsrbe(ween-s.ijects =SS + SSag + SSee/a
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SSyithin-subjects = SSu + SSya + SSyera + SSus + SSuas + SSucs/a T SSus/eera
We have g groups at each of a levels of A. Within each group, there are b levels of B and n

subjects at each of those levels. So we have bn subjects in each of ag groups, for atotal of agbn
subjects. Each subject provides one score at u levels of U — agbnu scoresin all.

Source d.f. SS F

Between G: ag-1
A a1 SSA M SA/M SG/A
G/A a(g-1) SSe/a

Within G, between S ag(bn-1)
B b-1 S MSa/MSgg/a
AB (@-1)(b-1) SSas MSae/MSge/a
GB/A a(g-1)(b-1) SSca/a MSge/a/MSs/ca/a
S/GB/A gba(n-1) SSs/ce/A

Within S: agbn(u-1)
U u-1 S MSy/MSycra
UA (u-1)(a-1) SSua MSya/MSycra
UG/A (u-Da(g-1) SSuera MSye/a/MSycs/a
uB (u-1)(b-1) SSus MSys/MSyce/a
UAB (u-1)(a-1)(b-1) SSuns MSyae/MSyce/a
UGB/A (\H1)a(g-1)(b-1) SSuce/a MSyce/a/ MSys/cera
US/GB/A (u-1)gba(n-1) SSus/ce/a

Tota N-1=agbnu—1 SSta

Top tip: to check your df add up to the total, it's quick to use Mathematica®. For example, sim-
plify[(u-1) + (u-1)(a-1) + (u-1l)a(g-1) + (u-1) (b-1) + (u-1) (a-1) (b-1) + (u-
1)a(g-1) (b-1) + (u-1)g*b*a(n-1)] giveSa b g n (-1 + u). When you realy can’'t work
out the appropriate error terms, you can enter the model into SPSS and see what it used.

®

Subject
1

c

depvar
datum
datum
datum
datum
datum
datum
datum
datum
datum

A
1
1
1
1
1
1
1
1
1

RPRRPRRRPRRRRER
NRRRRPRRRRERLD
WNNNNR R R
PDMWONEPAONR

... and so on. Just the same as the previous exampl e but with the new U column.

See the notes about group coding above.

GLM depvar BY a g b subject u
/RANDOM g subject
/DESIGN = a g(a)
b a*b g*b(a) subject(g*b(a))
u u*a u*g(a) u*b u*a*b u*g*b(a) u*subject(g*b(a)) .

7.18.5. Nesting within-subjects variables, such as V/US/A

Example

Model

We have five experienced subjects and five novice subjects (factor A for experience; between-
subjects factor; fixed factor; a = 2; n = 5; total of an = 10 subjects). Every subject is required to
solve 12 problems, of which 4 are easy, 4 are of intermediate difficulty, and 4 are hard (factor U
for difficulty; factor V for problem; u = 3; v = 4). This is aimost the same as a one between,
two within design except that V is nested within U, not crossed with it (Myers & Well, 1995, p.
334-338).

See sources of variance below, which follow directly from the model and are easier to grasp.

Sources of variance  We start by partitioning into between-subjects and within-subjects variability:
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SSota = SSoetween—Sijects + SS/vithin—subjects
SSoetween-subjects =SS5 + SSy/a

To partition the within-subjects variability, we can first view the design as involving uv levels
of ‘stimuli’. That is, in general, we begin partitioning within-subjects variability by using our
smallest experimental units. We also cross stimuli with all the between-subject sources:

SSyithin-subjects = SSstimuli + SSstimuli xA T SSstimuli x /A

We now partition the variability due to stimuli and itsinteractions:

SSyimui = SSy + SSyu

... and cross those with A and S/A inturn:

SSsimuii x A = SSau + SSav/u
SSimuii x /a = SSsuza + SSsv/au

We can partition the df in the same way. Actual values for the dfs are in square brackets:

dftotal [abcn—l] = dfbetween-subjects [an—l] + dfwithin-wbjects [an(uv—l)]
Ofpetween-suvjects = dfa [a=1] + dfs/a [a(N-1)]
Afwithin-subjects = Afsimui [UV—=1] + Afgimui x a [(@=1)(Uv=1)] + Afsimui x 7a [A(N1)(Uv=1)]
Ofimui = dfy [U=1] + dfy,y [u(v-1)]
Ofsimuii x A = dfau [(@=1)(U-1)] + dfavsu [U(@-1)(v-1)]
Ofstimui x s7a = dfsuza [a(N-1)(U-1)] + dfsy/zau [aU(n=1)(v-1)]

A way of checking the design is to list al factors, random and fixed, noting any nesting. We
have four: A, S/A, U, V/U. Now we consider al possible cross products of these factors. We
write ‘no’ next to them if it’s not legitimate to cross them — for example, if Sisnested in A, it
cannot also cross with it.

A xXS/A No
AxU AU
AxV/U AV/U
S/AxU SU/A
S/AxV/U SV/AU
CxV/U No

The four factors we started with plus the four cross-products generated above are the terms of
interest. We should also consider crossing more than two factors, but in this design no legiti-
mate terms would turn up (for example, A x U x V/U is not legitimate because V cannot be
nested within U and still cross with it). Once we' ve specified our factors, we can enter them into
SPSS' s design syntax.

Source df. SS F
Between S: an-1
A a1 SSA M SA/M SS/A
S/A a(n-1) SSy/a MSs/a/MSgy/a
Within S; an(uv-1)
U u-1 Sy MSy/MSqy/a
AU (a-1)(u-1) SSau MSau/MSsy/a
V/U U(V—l) SS\//U M S\//U/M S&//AU
AV/U U(a—l) (V—l) SSAle M SAV/U/M SSV/AU
SlJ/A a(n—l)(u—l) SSS[J/A MSS[J/A/M S&//AU
SV/AU au(n-1)(w1) SSsv/au
Total N-1 = abcn-1 SSota

The F ratios depend on which factors are treated as fixed and which as random (because that
determines the EM S val ues); the ratios presented above are for when Sisrandom and A, V, and
U are all fixed. Actually, our example suggests that V, which we write in full asV /U (‘ specific
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problem of a certain difficulty’) should be random; in that situation, the appropriate error term
must be synthesized as a linear combination of other terms. It seems that SPSS and BDM P8V
do this in dightly different ways (Myers & Well, 1995, p. 337, versus SPSS analysis of the
same data).
SPSStechnique Subject depvar
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum

A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

NNMNNNRRRRPRRPRRRERRRRERR
NNRPRWOWWWWNNNNRRERRC
RWNRPRAWONRPRAONRLPNMWONRKK

datum
datum
datum
datum

NNNDN:
(o2 ep N ep RN ep}

N
AWN PR

GLM depvar BY a subject u v
/RANDOM subject
/DESIGN a subject (a)
u v(u) a*u a*v(u) subject*u(a) subject*v(a*u) .

If V isarandom factor too, you' d want /rRaNDOM = subject v, and SO on.

7.18.6. The split-split plot design

Alternativenames o Split-split plot, completely randomized design
e  Pretty awful

Example (1) An agricultural example (Winer et al., 1991, pp. 368-9). An orchard is divided into plots.
Each level of factor A is assigned at random to n plots, so there are an plots in total. Each
of the plotsisthen divided into b subplots, and the b levels of factor B are assigned to them
at random. Finally, each of the subplots is divided into ¢ sub-subplots, and the c levels of
factor C are assigned to them at random. Thus the experimental unit for A is the whole plot,
the experimental unit for B is the subplot, and the experimental unit for C is the sub-
subplot.

Since the sub-subplots are nested within the subplots, and the subplots are nested within the
whole plots, factor C is nested under the subplots and factor B is nested under the whole
plots. Factor A is partially confounded with groups of whole plots.

(2) A rat example. Rats are implanted with dialysis probes in either the medial prefrontal cor-
tex (Ay) or orbitofrontal cortex (A,). They are then assigned to triplets. One rat in each
triplet chooses between two levers offering alternative reinforcers in a task (B;). Another
(B,) is offered only the lever chosen by the master rat. A third (B3) is given the reinforcer
chosen by the master rat, without any opportunity to press a lever. Finaly, all rats are dial-
ysed at five time points (C;...Cs).

Data from different levels of factor A (probe site) are unrelated. Data from different levels
of factor B (choice type) may be related to each other, because they all come from the same
triplet. Data from different levels of factor C (time) may be related to each other, because
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they all come from the same rat. However, we cannot wholly distinguish rat individuality
from the effects of choice type.

This design is equivaent to the agricultural one: Triplet = Plot, and Rat = Subplot. As be-
fore, A (lesion) is the whole-plot factor (a triplet either gets media prefrontal or orbito-
frontal probes), B (choice type) is the subplot factor (within atriplet, arat is either a master,
lever-yoked or reinforcer-yoked rat), and C (time) is the sub-subplot factor (every rat gets
dialysed at five time points, so the ‘sub-subplot’ is the combination of a particular rat at a
particular time).

Yikm = 4+ 0 + Ty + By + 0B + Tingiiy + Vi + ik + B + 0B%ji + Tingiiy + Eijkm

where

Yijm IS the value of an observation in condition A;, ploty, Bj, and C,

w1 isthe grand mean

a; 1sthe contribution of A;

B; is the contribution of B;

7k IS the contribution of Cy

afj, ayik, Py and is the contribution of the AiB;, A;Cy, and B;Cy interactions, respectively
Zm(y 1sthe contribution of plot m (which only ever experiences A;)

. ”Fn(ij) is the contribution of the subplot in plot mthat experiences A;B;
. ”ﬁ(ijk) is the contribution of the sub-subplot in plot mthat experiences A;B;Cy
* s iseverything else (error)

For our rat example, we'd call triplet ‘plot’ and rat ‘subplot’ (and consider them as random
factors, while the others are fixed factors). We' d write the model like this:

SSota = SSoetween—plots + Svaithin-plots
SSoetween-plots =SS5, + SSplot><A
Svaithin-plots = SSoetween—subplotsrwithin—plots + SSNithin-s.prlots
Ssoetween-subplots—within—plots =85 + S5 + SSBprot/A
Svaithin-s.prIots = SSC + SS(><A + SS(><B + SSC><A><B + SSNithin-s.prlot error Cxplot/AB

Source d.f. SS F

Between plots: an-1
A a1 SS, MSA/MSyeixa
error plot x A a(n-1) SSiiotxa

(‘whole-plot residual")

Within plots, between subplots: an(b-1)

B b-1 SSB M SB/M SB><p| ot/A
BxA (b-1)(a-1) SSaxs M Saxe/ M Sepior/a
error B x plot/A a(b-1)(n-1) SSsplor/a
(“subplot residual’)

Within subplots: abn(c-1)
C c-1 SSc M SC/ M SC><p| ot/AB
CxA (c-D(a-1) SScxa MSc.a/ M Scpior/as
CxB (c-D(b-1) SSc.e M Sc.e/ M Scxpior/as
CxAxB (c-D(a-1)(b-1) SScxaxs M Scxaxe/ M Scaplor/as
error C x plot/AB ab(c-1)(n-1) SScuploaB

(*sub-subplot residual’)
Total N-1=abcn-1 SSotal
where a is the number of levels of factor A, etc., N isthe total number of observations (= abcn),
and n is the number of subjects. The F ratios above assume that Plot is random and A, B, C are
fixed.

For the rat example, simply read ‘triplet’ instead of ‘plot’ and ‘rat’ instead of ‘subplot’.
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Result! Agrees with Winer (1991, p. 369, although there are typos in his ANOVA table; ‘within
sub-subplots' is certainly a mistake).

Plot depvar
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum
datum

A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

NNMNNNNRRRPRRPRRPRPRRREPRRERRRRER
PRRPRRPOWWWWNNNNNRRRRER|m
ORWNRPUODMWONRPUORMONROMWNRO

datum
datum
datum
datum
datum

NN NN
00 00 00 O
PR PR
OhwWN R

It doesn’'t matter whether you specify unique labels for nested factors or not — what | mean by
thisisthat you can code ‘plot’ from 1, 2... for the A; condition and carry on counting (8, 9, ...)
for the A, condition, or you can start numbering ‘plot’ from 1 again in the A, condition. Since
the design ‘knows' that plot is nested within A (one plot only gets one level of A), it won't get
confused.

GLM depvar BY plot a b c
/RANDOM plot
/DESIGN a plot*a
b b*a b*plot (a)
c c*a c*b c*a*b .

Top tip: when faking data to analyse complex models, ensure that you don’t over- or under-
specify your model! MRFA pointed out that | had been stupid in my initial attempt at this exam-
ple, which included a ‘rat’ (subplot) term: because a triplet x B [choicetype] combination
uniquely specifiesarat in this example, there'sno ‘room’ in the design for a ‘rat’ term.

7.18.7. Three levels of relatedness

Alternative names

Examples

o  Split-split plot, randomized complete block (RCB) design
e Horrendous

(1) The standard agricultural example: a randomized complete block design (RCBD) with
blocks (also known as replicates), plots (A), subplots (B), and sub-sub-plots (C). Suppose
A hastwo levels, B has two levels, and C has three levels. This would be a description of a
field laid out like this:
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sub-sub-plot Block 1 Block 2 Block 3
g Al P AL Al A2 A A2 Al AL LAl
p Bl i Bl | Bl Bl | Bl | BI B2 ! B | B2
2 c i o2 i G ioa o 2 o o
ke : ' | : ‘ :
o
Al Al Al A2 A2 A2 Al Al Al
B2 B2 B2 B2 B2 B2 Bl Bl BI
c3 2 cl c2 c3 cl cl c3 &)
A2 A2 A2 Al Al Al A2 A2 A2
B2 B2 B2 B2 B2 B2 Bl Bl Bl
2 3 cl c3 cl 2 c3 cl 2
A2 A2 A2 Al Al Al A2 A2 A2
Bl Bl Bl BI Bl Bl B2 B2 B2
cl c3 c2 c2 cl c3 cl cl c3

Split-split plot, randomized complete block design.

The field is split into blocks.

Each block is split into two plots and factor A (2 levels) is assigned at random to the plots.

Each plot is split into two sub-plots and factor B (2 levels) is assigned at random to the sub-plots.

Each sub-plot is split into three sub-sub-plots and factor C (3 levels) is assigned at random to the sub-sub-plots.

Compare the RCB three-factor agricultural design illustrated in our consideration of the
three-within-subject-factor design (U x V x W x §) (p. 118). ‘Similarity’ or ‘relatedness’ in
agriculture often refers to geographical nearness; in the (U x V x W x S) design discussed
earlier, adjacent mini-plots of land were likely to be similar by virtue of coming from the
same block, but there was no other consistent relationship between geographical nearness
and the factors U, V, or W. Thisdesign is a bit different. Y ou can see here that two adjacent
individual experimental units (the sub-sub-plots) are most likely be related by virtue of
coming from the same Block, quite likely to be related by virtue of having the same value
of the A factor, not quite as likely to be related on the B factor, and least likely to be related
on the C factor.

Another way of putting it: blocks are crossed with A (all blocks experience al levels of A).
Plots are nested within A (one plot only gets one level of A). Plots are crossed with B (all
plots experience all levels of B). Subplots are nested within B (one subplot only gets one
level of B). Sub-subplots are nested within C (one sub-subplot only experiences one level
of C).

(2) Another agricultural example (Prescott et al., 1999). Four blocks were used, spread across a
forest (top-level factor: Block); the experiment was replicated across these blocks. Each
block was divided into four plots, which were each fertilized with a different fertilizer, as-
signed to the plots at random. Small bags of leaf litter are placed in these plots (litter
placement factor, or ‘fertilizer that the litter is placed in': Ay, Ay, As, A4). The bags them-
selves came either from the same plot or one of the other three plots in the same block (lit-
ter source factor, or ‘fertilizer that the litter came from': B4, B,, B3, B4). The litter massis
then measured at different time points (C;...Cs).

Notes e This is different to a split-split plot design based on a completely randomized design
(CRD), which doesn’t have the *block’ factor.

e  See www.ndsu.nodak.edu/ndsu/horsley/ spspplot.pdf, the only worked example I’ ve been
ableto find. That also says:

‘The split-split plot arrangement is especially suited for three-or-more-factor experiments
where different levels of precision are required for the factors evaluated. Three plot sizes
correspond to the three factors: the largest plot for the main factor, the intermediate size plot
for the subplot factor, and the smallest plot for the sub-subplot factor. There are three levels
of precision with the main plot factor receiving the lowest precision, and the sub-subplot
factor receiving the highest precision.’

Sources of variance Let’s call blocks (replicates) R, the plot treatment A, the subplot treatment B, and the sub-

subplot treatment C. Replicate will be a random factor; the others will be fixed. We'd write the
model like this:

SSeota = SSoetween—replicat% + Safvithin-replicaieﬁ
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SSoe(ween-repl icates = SSr

SSNithin-repIicaﬁeﬁ = SSoetween-pIotsrwithin—replicala + SSwithin—plots

SSoetween-plotsrwithin-replicat% =SS, + SSgrea

Svaithin-plots = SSoetween—subplotsrwithin—plots + SSNithin-s.prlots
Ssoetween-subplots—within—plots =85 + SSgea + SSrep/a
Svaithin-s.prIots = SSC + SS(><A + SS(><B + SSC><A><B + SSNithin-s.prlot-error CxR/AB

7: Specific designs

Source df SS F

Between replicates (R):
R r-1 SSR M SR/ M SR><A

Within replicates, between plots:
A a1 SSA M SA/ M SR><A
error Rx A (r-1(a-1) SSkea

Within plots, between subplots:
B b1 SS MSs/MSzue/a
BxA (b-1)(a-1) SSaa MSgua/ M Sgee/a
error Rx B/A a(r-1)(b-1) SSxee/a

Within subplots:
C c-1 S& MSc/MSeuc/ns
CxA (c-1)(a-1) SScua MSca/ MSrucrnB
CxB (C—l) (b—l) SS(><B M S(><B/M SRXC/AB
CxAxB (c-D(a-1)(b-1) SScxaxB MSc.axe/ M Srecrzas
error Rx C/AB ab(r-1)(c-1) SSrucrae

Total rabc-1 SSita

Rep A B C depvar

1 1 1 1 datum

1 1 1 2 datum

1 1 1 3 datum

1 1 2 1 datum

1 1 2 2 datum

1 1 2 3 datum

1 2 1 1 datum

1 2 1 2 datum

1 2 1 3 datum

1 2 2 1 datum

1 2 2 2 datum

1 2 2 3 datum

2 1 1 1 datum

2 1 1 2 datum

169

You don't even need explicit ‘plot’, ‘subplot’, or ‘sub-subplot’ labels; al that information is

contained in the design and the A/B/C factor labels.

GLM depvar BY r a b c
/RANDOM r
/DESIGN r a r*a
b b*a b*r(a)
c c*a c*b c*a*b .
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7.19 Latin square designs

There are two approaches to Latin squares. One (the simplest) is to use a Latin
square as an experimental design technique to ensure that some factor (e.g. time,
order) is not confounded with experimental treatments. The other (more advanced
but far preferable) is to do this, but also to use information about this factor (e.g.
time, order) in the analysis — to take account of variability attributable to this factor
to reduce the error variability and increase the power to detect effects of the treat-
ment of interest. This can be much more complicated than | first thought!

For this section, | will abandon my previous convention of A, B... representing be-

tween-subjects factors and U, V... representing within-subjects factors, because this
makes it easier to compare complex designsto the original sources.

7.19.1. Latin sguaresin experimental design

Here's an example of the ‘novice’ (experimental design only) approach that I've
used (e.g. Cardinal et al., 2003). Rats had intracranial cannulae implanted in their
nucleus accumbens. They responded on a lever that delivered a stimulus previously
paired with reinforcement (a conditioned reinforcer). Before the session, they were
given intra-accumbens amphetamine at one of four doses (0, 3, 10, 20 ug per hemi-
sphere). As| put it:

Doses were counterbalanced in a Latin square design to eliminate differential
carryover effects and separated by 24 h. The Latin square was of a digram-
balanced design (Keppel, 1991, p. 339), in which each condition immediately
precedes and follows the other conditions once (e.g. 1234, 3142, 2413, 4321).

What | meant was that if ‘1’ represents one dose (0 ug), ‘2’ represents the second,
‘3’ thethird, and ‘4’ the fourth, the design looked like this:

Dayl Day2 Day3 Day4

Patternl 1 2 3 4
Pattern2 3 1 4 2
Pattern3 2 4 1 3
Pattern4 4 3 2 1

There were more than 4 subjects, so | allocated them to the four patterns at random.
The idea is that the order of treatments 1-4 was counterbalanced appropriately. The
square isal atin square— an n by n grid containing the numbers 1 to n arranged in
such a way that no row and no column contains the same number twice. If | had
given al the subjects the treatmentsin the order 4, 3, 2, 1, and | found that treatment
4 gave higher responding than treatment 1, | wouldn’t know if that was due to the
difference in drug doses or the fact that with time, responding declines generally
(extinction), or some other effect left over from the previous day’s dose. So the
Latin square counterbalances for order. There are good and bad Latin squares. The
one above is ‘digram-balanced’, which is good — every condition immediately
precedes and follows the other conditions once. The one below is cyclic, which isn't
SO good:

Dayl Day2 Day3 Day4

Patternl 1 2 3 4
Pattern2 2 3 4 1
Pattern3 3 4 1 2
Pattern4 4 1 2 3

because in this design dose 1 is nearly always preceded by dose 4, and nearly always
followed by dose 4 — clearly not as good as the digram-balanced one. The digram-
balanced version controls for sequence effects better. However, digram balancing
can only be done if there is an even number of treatment conditions (Keppel, 1991,
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p. 339). Otherwise, there are procedures for selecting a random Latin square (Winer
etal., 1991, p. 674; Myers & Well, 1995, p. 346).

Anyway, back to the example. When | analysed these data, | ignored the ‘day’ fac-
tor. | simply took all the ‘dose 1' scores, al the ‘dose 2’ scores, and so on, and en-
tered the data with a within-subjects factor of Dose. This wasn’t optimal — | could
have used information about the Day factor as well. That could be more efficient
(Myers & Well, 1995, p. 351), because it would remove variability attributable to
Days to give better power to detect effects of Dose. Let’s see how that can be done.

7.19.2. The analysis of a basic Latin square

Example

Notes

Model

We test five monkeys (Myers & Well, 1995, p. 344) on discrimination learning under five dif-
ferent drug doses on five different test days. We use this Latin square (S = subject = R =row, C
= column = day in this example, A = drug dose).

S
S A AL A A Ay
S
S

S A A A A A
See Myers & Well (1995, chapter 11); Winer (1991, chapter 11).

The Latin square analysis is potentially more efficient than the simple within-subjects analysis
(ignoring Day) for the following reasons (Myers & Well, 1995, p. 351). The error term for the
within-subjects (A x S) analysis, MSq.a, Will be larger than the error term for the Latin square
analysis as long as M is larger than the Latin-square error term M Sy, However, the Latin
square error term has fewer df, which reduces power. The relative contribution of the two ef-
fects can be calculated (Myers & Well, 1995, pp. 351-2).

When using Latin squares to counterbalance for order, it is vital that the position in the order
(Day, in the example) does not interact with the treatment (Drug, in the example) (Keppel,
1991, p. 336-9; Winer et al., 1991, p. 682). If one dose has a different effect when it’s given
first in the order to when it’s given third in the order, we'd have to be very careful of the inter-
pretation. It's worth plotting treatment means against order to check this assumption. If the
effect of different doses reverses on different days, it's very hard to analyse or interpret
(Keppel, 1991, p. 338) and we may be reduced to analysing only the data from the first tet,
which is uncontaminated by any prior effects, but which may have rather low statistical power.

WEe' ve seen that one major use of Latin squares is to counterbalance order effects, as shown
here. But they have other uses. Latin sguares were first used in agriculture to control for two
nuisance variables (assigned to the rows and columns, with the assumption that the treatment
effects do not interact with the row and column effects) (Winer et al., 1991, p. 680). They may
be extended to deal with three nuisance variables using a Greco-L atin (Graeco—L atin) square, in
which two orthogonal Latin squares (Winer et al., 1991, p. 674) are used; one is given Greek
letters, the other Roman (Latin) letters, and the two are superimposed (Winer et al., 1991, pp.
680-1). This principle can be extended to four or more nuisance variables. It's also possible to
use Latin squares to extract partial information from confounded factorial designs (Winer et
al., 1991, p. 682). Latin squares are a special case of fractional factorial designs (Winer et al.,
1991, pp. 585, 683), in which not all the treatment conditions of a factorial design are examined
(see also GLM notes about fractional factorial designs, p. 88—).

An additive model assumes that main effects are additive, and don’t interact — i.e. that the A
and C do not interact. The modd! is:

Yik = U+ + 0 + ¥+ Ejk

where u isthe grand mean, 7; is the effect of row i (in this example, subject S), «; isthe
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effect of treatment A, and y, isthe effect of column k (in this example, day k).

Sources of variance  For this additive moddl, SSgta = SSiow + SScoiumn + SSa + SSarror

ANOVA table Since the number of rows, columns, and treatments is the same,
Source d.f. SS F
Row (subject) a-1 SSk MSr/M Serror
Column a-1 SSe MSc/M Saor
A‘ a—l SSA I\/lsA/MSError
Error (a=D)(a-2) SSaror
Total N-1=a’1 SSta
SPSStechnique Data layout:
S C A depvar
1 1 1 datum
1 2 2 datum
1 3 4 datum
1 4 3 datum
1 5 5 datum
2 1 3 datum
2 2 1 datum
2 3 5 datum
2 4 2 datum
2 5 4 datum
Syntax:
UNIANOVA

depvar BY s c a
/RANDOM = s

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = s c a .

If Cisarandom factor, simply add it to the /ranpowm list. In general, substitute Row for Subject
for any suitable Latin square.

Missing values If we assume the additive model, then it’'s possible to estimate missing scores (Myers & Well,
1995, p. 352) to allow analysis. Of course, our error df are reduced when we do that.

Nonadditive model  If the additivity assumption (above) isn't realistic, you can use a nonadditive model. The full
model addsinthe Sx C, Sx A, A x C, and Sx C x A terms. However, it is what we might call
very complex indeed (Myers & Well, 1995, pp. 352-356); | certainly don’t understand it.
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Example

Notes

Model

Sources of variance

ANOVA table

SPSStechnique

We assign not only an A treatment but also a B treatment to each cell of the Latin square. This
can be analysed provided that al possible AB combinations appear exactly once in each row

and column. For example (Myers & Well, 1995, pp. 356-7):

C. C, GCs
AiB, A;B; AiB;
AB1 AB, AiB,
AB, AiBi AB;
AiB; AiB, AjB,

LY Y»

Cq

AzB;
A1B,
A1B;
AzB.

Yikm =ML+ 1 + & + B + OB + Vi + Ejkm

where u isthe grand mean, 7; is the effect of row i (in this example, subject S), «; isthe
effect of treatment A;, Sy isthe effect of treatment By, a5 isthe A x B interaction, and ¥, is
the effect of column m.

Sstotal = Ssrow + SScolumn + SSA + SSB + SSAB + SSError

Since the number of rows, columns, and AB conditionsis the same,

Source d.f. SS F
Row (subject) ab-1 S MS:/MSqror
Column ab-1 SSc MS/MSqror
A a1 SSA “AS%/“ASer
B b-1 SS MSz/M Sqror
AxB (a-1)(b-1) SSas MSag/M Saror
Error (a-1)(a—-2) SSerror
Total N-1 = (ab)*>~1 SSta
Data layout:

S C A B depvar

1 1 1 2 datum

1 2 2 1 datum

1 3 1 1 datum

1 4 2 2 datum

2 1 2 1 datum

2 2 2 2 datum

2 3 1 2 datum

2 4 1 1 datum
Syntax:

UNIANOVA

If Cisarandom factor, simply add it to the /ranpowm list.

depvar BY s ¢ a b
/RANDOM = s

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = s ¢ a b a*b .
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7.19.4. More subjectsthan rows: (a) using several squares

Example

Notes

Model

Sources of variance

ANOVA table

In the first example above, we had five treatments and were therefore limited to five rows (sub-
jects). If we want to run more subjects, which will increase power, one way is to use severa
different squares. This approach has an advantage: if there are interactions with order, using
severa different squares increases the chance that positive and negative interaction effects will
cancel each other. Suppose (Myers & Well, 1995, p. 357) we have 12 subjects being tested on
four tasks (A;—A,) requiring different types of motor skill. Each task is performed on a different
day (C). Three 4 x 4 Latin squares are constructed (see Myers & Well, 1995, pp. 346-348), and
subjects are assigned at random to the 12 rows. The design looks like this:

Square

S A A Ay A
Q1 S As Ay A, Ay
S A A AL Az
SS A, A Ay A,
C, C C; GC,
A AL Ay A,
Q2

LYY
>
>
>
&

Qs S A A, Az A,

Subjects (S) are nested within squares (Q). We assumethat S and Q are random factors, while A
and C arefixed.

Either this model:
Yijkm =L+ im+ &) + Vi + T + O oy + Vo + Eijkm

where u isthe grand mean, 7., is the effect of subject i (within squarem), «; is the effect of

J
Aj, 7 isthe effect of column k, arj,, alows for the possibility that treatment effects depend

on the square (AQ interaction), and yz,,,, alows for the possibility that column effects depend
on the square (CQ interaction)...

... or, if the full model produces no evidence for AQ or CQ interactions, this reduced model,
which pools the AQ and CQ termsinto the error term to increase power:

Yikm =M+ im+ &) + Vi + T + Ejkm
Either this (for the first model):
SSiota = SSs/q + SSa + SS¢ + SSq + SSaq + SScq + SSerror
or this (for the reduced model):
SSita = SSy/q + SSa + SS¢ + SSq + SSurror

For the full model:

Source d.f. SS F

Squares (Q) o1 Sy MSe/MSs/q
S/Q q(a—l) SSS/Q MSS/Q/M Serror
C a-1 SSC M SC/M Serror

A a-1 SSa MSa/M Saror
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CxQ (a-1)(a-1) SSeq M Sco/M Suror
A x Q (a_l)(q_l) SSAQ MSAQ/ M Serror
Error q(a—l)(a—2) SSerror

Total N-1 = ga’~1 SSa

For the reduced model:

Source df. SS F

Squares (Q) o1 SS MSo/MSs/q
S/Q q(a—l) SSS/Q MSS/Q/M Serror
C a-1 SSC IVlSC/MSbrror
A a1 SSA “AS%/“ASer
Error (qa—2)(a—1) SSerror

Total N-1 = ga’~1 SSa

SPSStechnique Data layoult:

Q S C A depvar
1 1 1 1 datum
1 1 2 3 datum
1 1 3 4 datum
1 1 4 2 datum
1 2 1 3 datum
1 2 2 4 datum
1 2 3 2 datum
1 2 4 1 datum
2 5 1 2 datum
2 5 2 1 datum
2 5 3 3 datum
2 5 4 4 datum

Syntax for the full model:

UNIANOVA
depvar BY g ¢ a s
/RANDOM = s q
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = g s(g) ¢ a c*g a*qg .

For the reduced model:

UNIANOVA
depvar BY g ¢ a s
/RANDOM = s g
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = g s(g) ¢ a .
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7.19.5. More subjects than rows: (b) using the same square several times (replicating a single Latin square)

Example

Notes

Model

Sources of variance

Complicated bit

ANOVA table

As above, but now you decide to use asingle 4 x 4 square and assign n subjects to each row of

the square. If n = 3, your design might look like this:

SUb] ects C; C, C; Cy
S,$S% A2 Ar As Ay
S4l S-—,, SG Al A3 AZ A4
$,%S Ar A Al Ag
S S, S Az At A A

See Myers & Well (1995, pp. 364-368, 374-375), who point out that this design is frequently
used but frequently analysed improperly.

Should you use replicated squares, or severa squares (as on p. 174)? Myers & Well (1995, p.
371) suggest that several squares is better — experimenters tend to replicate squares purely for
simplicity. Anyway, let’s see how you analyse replicated squares now.

Thisisthe simple way:
Yikm = M + T+ Tl jm + & + Vi + Eijkm

where u isthe grand mean, =, is the effect of row m, 7;,,,, is the effect of subject i (within
rowm), «; istheeffect of Aj, and ; isthe effect of columnk.

That would give these sources of variance:

Sstotal = Ssoetween—wbjects + SSWithin—subjects
SSoetween-subjects =SSow t+ SSS.ijectsrwithin—row(S/ R)
SSWithin-subjects =SS\ + SSC + SSAXS/R

However, there are some extra finesses: we can partition the data another way.

e Therearea® cell meansin the Latin square. If you account for main effects of A, C, and R,
you're left with what's called the between-cells error or residual. It has (a*1) — (a-1) — (a—
1) — (a-1) = (a-1)(a—2) df.

e  Then you have the within-cells residual, which is equivalent to S x A (nested within R), or
S x C (nested within R), which are the same thing (since within one row, a subject’s level
of A completely determinesits level of C). This has a(n-1)(a—1) df.

Now...

e Variation among row means (SSy) reflects different effects of A x C combinations. In other
words, if thereisan A x C interaction, part of its effect will be reflected in M Sq.

e Part of any A x C interaction effect will also be reflected in what's left in the cell mean
variahility after you've accounted for main effects of A, C, and R — the between-cells er-
ror (MSye). So any A x C interaction would contribute to M Syce.

e S0 both MS; and M S, partialy reflect effects of A x C.

This picture would give this model:
Yikm =L+ im+ &+ Vi + O ji + Eijim
and this partitioning:
Sstotal = Ssoetween—wbjects + SSWithin—subjects
Ssoetween-subjects = SSSubjects—Within—row(S/ R) + some-par t'C)f‘SSAC
SSuithin-subjects = SSa + SSc + some-part-0f-SSac + SSacs/r

Thisisfor the simple way of doing things:
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Source d.f. SS F
R a1 S MSo/MSgy/r
S/R n(a—1) SSy/r M Ss/r/M Serror
C a-1 SSC IVlSC/MSbrror
A a1 SSa MSa/M Sqror
Error (a-1)(an-2) SSeror
Total N-1 = na>~1 SSa
Thisisfor the complex way:
Source d.f. SS F
R (AC) a1 S MSo/MSs/r
S/R n(a-1) SSy/r MSs/r/MSyce
C a1 SS MSc/MSice
A a1 SSA “AS%/“ASM@
Between-cellserror (a—1)(a—2) SSiee MSy e/ MS,ce
(AC)
Within-cellserror  a(n-1)(a-1) SSice
= SXA/R =5SxC/R
Total N-1 = na>1 SSa
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The rows labelled AC’ give estimates for the effect of the AC interaction, based on partia in-
formation. The between-cells error SS, is calculated as SSgc — SS, (that is, calculate the row x

column interaction and subtract SS,).

Data layout:
R S C A depvar
1 1 1 2 datum
1 1 2 3 datum
1 1 3 4 datum
1 1 4 1 datum
1 2 1 2 datum
1 2 2 3 datum
1 2 3 4 datum
1 2 4 1 datum
2 5 1 2 datum
2 5 2 1 datum
2 5 3 3 datum
2 5 4 4 datum

Run this:
UNIANOVA

depvar BY r ¢ a s

/RANDOM

]

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = r s(r) c a .

That’sit.

This is pretty complicated. First, run this to get the R x C interaction sum of squares (al the
sums of squares are correct, but thisis the only one you need).

UNIANOVA

depvar BY r ¢ s

/RANDOM

]

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
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/DESIGN = r s(r) c r*c .

Then, run this to get everything else. (This gives you correct answers for all sums of squares,
dfs, and M Ss. But you can improve on the F ratios by using a different error term...)

UNIANOVA
depvar BY r ¢ a s
/RANDOM = s
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = r s(r) c a .

Next, calculate

SShetween-calls-aror = SSrxc — SSa
SSNithin—oeIIs—error = SSerror-from-seoond-ANOVA-in-which-,A—was—ir1c|uded - Ssoetween—oells—error

Calculate the corresponding MS by hand. The df for these error terms (which you need to work
out the MS) are in the ANOVA table above.

Finally, test MSc and MSa agal Nst M Syithin-cells-error by hand.

If you Want, you can adsotest M SR (agal nstM SS/R) and MSoetween—ceIlsrerror (agal nstM vaithin-cdlsr
error) 8S estimates of the effect of the A x C interaction, based on partial information.

If C is arandom, rather than a fixed factor (Myers & Well, 1995, pp. 366-7), things become
more complicated, since C should be tested against MS,,c but A must be tested against M S,
but this has poor power; Myers & Well recommend that if the effect of M S, isn’t significant
itself that you use M S or the pooled M S, to test A and C.
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7.19.6. Between-subjects designs using Latin squares (fractional factorial designs)

Example

Notes

Model

Sources of variance

ANOVA table

Caveat

SPSStechnique

Suppose (Winer et al., 1991, p. 687; Myers & Well, 1995, p. 372) we want to compare the ef-
fects of three teaching methods (A;—A3). To increase the power, we decide to block subjects on
the basis of previous experience with the subject (R) and on the basis of ability as measured by
apretest (C). For thisfull-factorial design, we would need 3 x 3 x 3 = 27 cellswith n subjectsin
each. Instead, we reduce the labour by using a Latin-square design with only 9 cells: R would
be the rows, and C the columns. The design might look like this, with n subjects per cell:

C;, C, GC;

Ri Az Az A

R, As A1 A

Ry, A, A, A
Thisisvery similar to the usual agricultural use of Latin squares.

See also Winer (1991, p. 687-691).

If it assumed that there are no interactions between R, C, and A:
Yikm = L+ &} + B+ Vin + Eijkm

where u isthe grand mean, «; isthe effect of treatment A;, S is the effect of treatment R,

and y,, isthe effect of column m.

Sstotal = SSA + SSR + SSC + SSoetween-cdl—error + SSWithin-ceﬁl-re'sidual

where SSyaween-cal-aror iNClUAes all sources of variation due to treatment effects which are not
predictable from the sum of main effects (e.g. interactions... which you hope aren’t there; see
below).

Source d.f. SS F
R a1 S MS:/MS,ce
C a1 SSc MSc/MS,ce
A a1 SSa MS\/MS, e
Between-cellserror (a—1)(a—2) SSice MSye/ MSyce
Within-cellserror  a(n-1) SSice

=S/ABC
Total N-1 = na>~1 SSa

The between-cells error SS, is calculated as SSgc — SS, (that is, calculate the row x column
interaction and subtract SS,).

This model is appropriate if additivity can be assumed (if there are no interactions between R,
C,and A). And if S0, SSyeween-call-eror Will NOt be substantially larger than SS,,... One way to test
this (Winer et al., 1991, p. 687-8) isto look at the F test on M Sy If it's significant, then the
assumptions behind the model are not appropriate, and if this is not an appropriate model — if
there are interaction effects — then it’s very hard to analyse the data (Winer et al., 1991, p. 690;
Myers & Well, 1995, p. 373).

Data layout (with an unnecessary Subject column to make things clearer):

R CA'S depvar
1121 datum
112 2 datum
112 3 datum
112 4 datum
1 2 35 datum
1 2 3 6 datum
1 2 3 7 datum
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1 2 3 8 datum

3 13 datum
2 1 3 14 datum
2 1 3 15 datum
Run this:
UNIANOVA

depvar BY r ¢ a
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = r c a .

That gives you SSg, SSc, SSa, and SSia- But to get SSye and SS,ce, You have to run this to
obtain SSyc:

UNIANOVA
depvar BY r c
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = r c r*c .

Then calculate SSyce = SSre — SSa and SSyee = SSerror-from-first-ANOV A-indluding-A-factor — SShce by hand
and complete the ANOVA table.
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7.19.7. Several-sguares design with a between-subjects factor

Example

Notes

Model

Sources of variance

ANOVA table

We saw how to use a design with several Latin squares above (p. 174). We had a within-
subjects factor A. Let’'s add a between-subjects factor B with b levels. We have q squares per
level of B, and a subjects in each squares with a scores for each subject. If a=4,b=2andq =
2, we might have this:

Square
C, C, C3 (4
S A A A A
B: Q1 S As Az Ay Ay
S A As Ay Ay
S, A Ay AL A
C, C, C3 (4
S Ar As A A
BiQ: S A A Ap Ag
S AL Ar A A
S Az A AL A
C, C, C3 (4
A Ay Az A
B> Qs As Az Ay Ay

BoQs Su A1 A Ay Az

This example based on Myers & Well (1995, p. 361), though their original has several numeri-
cal errors in their fourth square, which isn’'t even Latin (some A values appear twice in a col-
umn).

Yikm =L+ B+ o+ 1ok + &+ Ym + OBj + Bl + O jp 1 + Pmpik T Eijkrp

where i index subjects (within squares within levels of B), j indexes the level of A, k indexes the
level of B, mindexesthe level of C, and p indexes the square (within alevel of B).

Subject and Square are assumed to be random; A, B, and C are assumed to be fixed effects.

| think it’sthis (based on Myers & Well, 1995, p. 362):

SSeota = Ssoetween—squares + SSNithin—squares
Ssoetween—squares =S5+ SSQ/ B
SSWithin—squar&s = SSoetwem-subjects—within—squares + SSNithin—subjects
Ssoetween-subjects—withi n-squares — SSS/ Q/B
SSyithin-subjects = SSp + SSc + SSag + SSg¢ + SSaqrs + SScors + SSuithin-subject-arror

We could & so note that SS,eween-subjects = SSg + SSarss + SSy/ars (Myers & Well, 1995, p. 363).

But if p > .25 for the interaction terms AQ/B and CQ/B, it would be reasonable to pool those
error terms:

SSyithin-subjects = SSa + SSc + SSag + SSsc + SSposled-within-subject-error

For the full model (note that Myers & Well, 1995 cock the df right up):
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Source d.f. SS F

B b-1 SS MSs/MSqy/s
Q/B b(o-1) SSore MSq/e/MSs/qre
S/Q/B bg(a-1) SSs/qre MSy/qre/ M Seror
A a—l SSA M SA/M SAQ/B

C a1 SSc MSc/MScore
AB (a—l)(b—l) SSAB M SAB/M SAQ/B
BC (b-1)(a-1) SSsc MSsc/MScors
AQ/B b(a—l) (q—l) SSAQ/B M SAQ/B/M Serror
CQ/ B b(a—l) (q—l) SSCQ/B M SCQ/B/ M Saror
Error bg(a-1)(a—2) SSaror

Total bga®~1 SSea

For the pooled error model:

Source df. SS F

B b-1 S MSs/MSq/s
Q/B b(o-1) SSore MSqo/e/MSs/qre
S/Q/B bq(a—l) SSS/Q/B M SS/Q/B/M Sarror
A a1 SSA “AS%/“ASer

C a1 SE% “ASk/“ASer
AB (a_l)(b_l) SSAB M SAB/ M Serror
BC (b_l) (a_l) SSBC M SBC/ M Serror
Error (pooled) b(a-1)(agq-2) SSerror

Total bga®-1 SSta
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Since Myers & Well’s (1995, pp. 361-3) numerical example is wrong, | have no way of verify-

ing this against some gold standard.

Dataformat:

depvar

RPRRPRPRREPRPRRRP D@

Y

NNNDN:

datum
datum
datum
datum
datum
datum
datum
datum

PRRPRRPRPRRRO
NNNNR R R R
AWONRAWNRO
PANWNWERE MDD

datum
datum
datum
datum

NN NN
o o1 01Ol
A WDN P
PN WhA

datum
datum
datum
datum

wWwww
© © © ©
A WNPFP
NWhE

Full model syntax:

UNIANOVA

depvar BY b g s ¢ a
/RANDOM = g s

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = b g(b) s(g(b))

a c a*b b*c a*g(b)

Pooled error model syntax, | presume, isthis:

c*q(b) .
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UNIANOVA
depvar BY b g s ¢ a
/RANDOM = g s
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = b g(b) s(g(b)) a c a*b b*c
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7.19.8. Replicated-squares design with a between-subjects factor

Example

Notes

Model

Sources of variance

ANOVA table

SPSStechnique

We saw how to use a design with a replicated Latin square above (p. 176). We had a within-
subjects factor A. Let's add a between-subjects factor B with b levels. We have one Latin
sguare with a rows, with n subjects for each row and therefore bn subjects per level of B. If a =
4,b=2and n=2, wemight have this:

B: B2

Subjects Subjects C, C, Cs C,
S, S So, Sio Ay A Al Az
S6 Sy Si1, Sia As Ay Ay A,
S S Si3, Si5 A, Ay As Ay

S S Sis, Sis A, As A, A,

See Myers & Well (1995, pp. 368-370, 374-375), who point out that this design is frequently
used but frequently analysed improperly.

Yikm =L+ i + &5 + B+ Ym + B + &Y jm + BV + OBV juméijkmp

where i indexes the subject (within arow x B combination; i = 1...n), j indexes the level of A (j
= 1...a), mindexes the level of C (m = 1...a), and p indexes the row within the square (p =
1...a).

Subject is assumed to be arandom factor; the rest are fixed.

SSeota = SSoetween—Sijects + SS/vithin—subjects
Ssoetween—wbjects =SS + SSg + SSgr + SSy/ar
SSyithin-subjects = SSc¢ + SSa + SSag + SSgc
+ SSoaween-call-residua + SSB x between-cal-residud + SSwithin-cel-residua

where SSpaween-cell-residud = SScr — SSa
and SSg x petween-call-residua = SSecr — SSae.

Source df. SS F
B b-1 SSs MS/MSs/sr
R(AC) a1 SSk M S2/M Sy/gr
BR (ABC) (b-1)(a-1) SSer MSgr/ M Ss/pr
S/BR ab(n-1) SSy/gr MSs/er/MSiice
C a1 S5 MSc/MSyce
A a1 SSA M SA/ M vace
AB (a-1)(b-1) SSag MSas/MS;ce
BC (a-1)(b-1) SSac MSsc/MSiice
Between-cellserror (a—1)(a—2) SShee MSyce/ M Siice
(AC)
B x betw.-cells error (a—1)(a—2)(b-1) SSaiee M Sg.hce/ M Syice
(ABC)
Within-cellserror  ab(a-1)(n-1) SSice
= SxA/BR = SxC/BR
Total N-1 = bna®~1 SSota

As before, some terms give estimates of interactions based on partial information; they’'re la-
belled with a prime () symbol above. Again, there's adf error in Myers & Well (1995, p. 370).

Data layout:
B R S C A depvar
1 1 1 1 4 datum
1 1 1 2 2 datum
1 1 1 3 1 datum
1 1 1 4 3 datum
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1 1 2 1 4 datum
1 1 2 2 2 datum
1 1 2 3 1 datum
1 1 2 4 3 datum
1 2 3 1 3 datum
1 2 3 2 1 datum
1 2 3 3 4 datum
1 2 3 4 2 datum
21 9 1 4 datum
2 1 9 2 2 datum
2 1 9 3 1 datum
2 1 9 4 3 datum
SPSS syntax:
UNIANOVA

depvar BY b r ¢ a s

/RANDOM = s

/METHOD = SSTYPE (3)

/INTERCEPT = INCLUDE

/CRITERIA = ALPHA(.05)

/DESIGN = b r b*r s(b*r)
c a a*b b*c .

That'll give you all the SS except SSyce; SSgxnce: aNA SSyce- TO get those, obtain SScr and SSgcr
from this syntax:

UNIANOVA
depvar BY b r ¢ s
/RANDOM = s
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = b r b*r s(b*r)

c c*b c*r b*c*r .

and caculate
ce = SScr — SSa
and

SSsiioce = SSeer — SSas
Finally, calculate

Svace = SSerror-from—first-ANOVA-incI uding-A — SSoce - SSB><bce

and use it to test the relevant terms by hand.
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7.20 Agricultural terminology and designs, compared to psychology

In psychology, the most important factor in experimental design is often the subject,
because this accounts for much correlation between observations. If you have two
groups of subjects and give the two groups the two treatments, you account for
much (you hope all) of the expected correlation between any two subjects by speci-
fying the ‘treatment’ factor in your analysis. (Of course, that may not be the case —
if one group were all men and the other all women, you’d have confounded sex and
treatment; another way of saying that is that correlations between individual sub-
jects’ scores may be due to them being members of the same sex rather than having
experienced a particular treatment.) On the other hand, if you measure subjects more
than once, you can expect high correlations between observations from the same
subject — much more so than between observations from different subjects. So you
need to account for intra-subject correlation, which you do by specifying a Subject
factor (by performing a within-subjects analysis). Much psychological research boils
down to asking ‘is this a between-subjects or a within-subjects factor?

However, many ANOVA techniques originated in agricultural research, so it often
happens that when you want an example of an advanced design, the only ones you
find are agricultural. And in agriculture, sources of correlation don’'t come from
‘subjects’, but from things like geographical proximity. If you want to see whether
fertilizer A works better than fertilizer B, you'd want to give fertilizer A to a set of
plants (obviously not just one) and fertilizer B to another set of plants. But it would
be pretty daft to spray fertilizer A on the sunny south-facing side of your field and to
fertilizer B under the shady oak tree. Agricultural designs and analyses revolve
around these sorts of ideas.

This overview of agricultural teminology is principally from Tangren (2002).

Completely randomized Y our smallest experimental unit (Sometimes called the ‘subject’ or ‘replication’) is a small
design (CRD) plot of land with a plant or plantsin it. Each experimental unit produces a single value of
the dependent variable.

You have four fertilizers (A-D; factor T for treatment; t = 4). You give each to four ex-
perimental units (‘subjects’) (n = 4 per group) at random. Adjacent subjects could poten-
tially have the same treatment. Here's one possible layout, where A-D are treatments and
1-4 are subjects within each treatment (a single ‘subject’ is underlined):

Al Bl Cl1 A2
D1 A3 D2 (2
B2 D3 C3 B3
C4 A4 B4 D4

The appropriate ANOVA is equivalent to a design with one between-subjects factor (p.
106). If t isthe number of treatments and r is the number of replications per treatment:

Source df SS F

T t=1 SST M ST /M Serror
error t(r-1) SSarror

Total tr=1 SSiota

CRD with subsampling The same as a CRD, except that you take three samples per plant (or small plot of plants,
or whatever your previous basic unit was; plant = replication). Treatments are assigned at
random to the plants. For example, if the treatments are A-D, the plants (replications) are
1-4 and the subsamples are a—, we could get this:

Ala Alb Alc B2a B2b B2c C3a C3b C3c B4a B4b B4c
Bla Blb Blc A2a A2b A2c C2a C2b C2c Ad4a A4b A4c
Cla Clb Clc B3a B3b B3c A3a A3b A3c C4a C4b C4c

A single plant/plot/whatever is underlined. The idea is that you get a better idea of your
measurement error (within-plant variability), so you can remove this to get a better esti-
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mate of your between-plant variability. The ANOVA looks like this:

SSiota = SSr + SSpetween-plant-variability T SSwithin-plant-variability

Source df SS F
T t=1 SSr MS/MS:
experimental error E t(r-1) SS MS/MSg
=replication/T
sampling error S tr(s-1) SSs
=‘error’
Total trs-1 SSota

where r is the number of replications per treatment and s is the number of subsamples per
replication. For example, see

www.stat.wisc.edu/ ~clayton/ stat850/ Handouts/ crdwsubsamp. pdf

No routine psychology equivalent? Except that it is a way to analyse situations in which
you have one between-subjects factor and you have multiple observations per subject.

Torunthisanalysisin SPSS, the data can be laid out like this:

T Rep depvar
1 1 subsample 1 datum
1 1 subsample 2 datum
1 1 subsample 3 datum
1 2 subsample 1 datum
1 2 subsample 2 datum
1 2 subsample 3 datum
2 5 subsample 1 datum
2 5 subsample 2 datum
2 5 subsample 3 datum

and analysed using this syntax:

UNIANOVA

depvar BY trt rep
/RANDOM = rep

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = trt rep(trt) .

To achieve this using the SPSS menus, you have to enter a custom model (because you
don’t want the Replication factor in there as a main effect; you just want replication/T).

You might think this was a good way to analyse designs in which you measure a subject
(replication) severa times. And indeed, thisis a valid way to analyse such data. Except...
this design gives identical answers to taking a mean for every subject (replication) and
analysing those means by one-way ANOV A using T asthe only factor! See p. 48.

‘The standard design for agricultural experiments' (Tangren, 2002). The orchard is di-
vided into units called blocks to account for any variation across the field (sunny hit,
shady bit, etc.). Treatments are then assigned at random to the plants in the blocks, one
treatment per plant (or small plot of plants). Each block experiences each treatment. If the
blocks are IV and the treatments are A—D, we might have this:

Block I A B c D
Block II D A B c
Block III B D c A
Block IV c A B D
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Source df SS F

Block B b-1 SS MS/MS
Treatment T =1 SS; MS/MS:
error E (t=1)(b-1) SS

Total th—1 SSiota

Equivalent to a design with one within-subjects factor (p. 112) (Block = Subject; Treat-

ment = WS factor).

The layout is the same as an RCB, but each plant (or plot) is sampled several times. For
example (asingle plant — subsampled basic unit — is underlined):

Aa Ab Ac | Ba Bb Bc Ca Cb Cc | Ba Bb Bc
Ba Bb Bc | Aa Ab Ac Ba Bb Bc | Aa Ab Ac
Ca Cb Cc | Ca Cb Cc Aa Ab Ac | Ca Cb Cc
Block I | Block II Block III | Block IV
Source df SS F
Block B b-1 SS MS/MS
Treatment T =1 SS; MS/MS:
experimental error E (t-1)(b-1) SS: MS/MSg
sample error S th(s-1) SSs
Tota th-1 SSita

where b is the number of blocks, t is the number of treatments and s is the number of sub-
samples per plot. For example, see

www.stat.wisc.edu/ ~clayton/ stat850/ Handouts/ crdwsubsamp. pdf
No routine psychology equivalent? Except that it is a way to analyse situations in which
you have one within-subjects factor (p. 112) (Block = Subject; Treatment = WS factor)

and you have multiple observations per level of the within-subjects factor per subject.

Torunthisanalysisin SPSS, the data can be laid out like this:

Block T depvar
1 1 subsample 1 datum
1 1 subsample 2 datum
1 1 subsample 3 datum
1 2 subsample 1 datum
1 2 subsample 2 datum
1 2 subsample 3 datum
2 5 subsample 1 datum
2 5 subsample 2 datum
2 5 subsample 3 datum

and analysed using this syntax:

UNIANOVA

depvar BY t block

/RANDOM = block

/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = t block t*block .

To achieve this using the SPSS menus, choose Analyze — General Linear Model — Uni-
variate. Enter T as afixed factor and Block as arandom factor.

You might think this was a good way to analyse designs in which you measure a subject
(replication) several times at each level of a within-subjects factor. And indeed, thisis a
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valid way to analyse such data. Except... this design gives identical answers to taking a
mean for every subject/factor combination and analysing those means using a straight-
forward within-subjects design with T as the only factor! Compare p. 48.

Used to control for variation in two different directions, the row direction and the column
direction. Each treatment appears once per row and once per column. There are the same
number of rows as columns as treatments (call that number r). For example:

Column 1 2 3 4

Row I A B c D

Row II c D A B

Row III D C B A

Row IV B A D C
Source df SS F
Row R r-1 SS: MS/MS:
Column C r-1 SSc MS/MS:
Treatment T r-1 SS; MS/MS:
experimental error E (r-1)(r-2) S
Total r’-1 SSea

Directly equivalent to Latin square designs used in psychology (p. 170—).

Two treatments are combined — for example, fertilizer (of type A or B) and pesticide (of
type aor b) are combined to give treatment combinations Aa, Ab, Ba, Bb. Each combina-
tion is then randomly assigned to replications, with r replications per treatment combina-
tion. For example, with a 2 x 2 design and 4 replications (plants, plots, whatvever) per
treatment, you might have the following layout (a single plant/plot is underlined):

Aal Bal Abl Aa2
Bbl RAa3 Bb2 Ab2
Ba2 Bb3 Ab3 Ba3l
Ab4 Rad4 Ba4 Bb4

Equivalent to a design with two between-subjects factors (p. 108). So the table is obvi-
ous:

Source df SS F

first factor F -1 SS: MS/MS:
second factor S s1 SS MSy/MS:
FxS (F1)(s-1) SSes MS-s/MSe
error E fs(r-1) SS:

Total for—1 SSiota

Orchard is divided into blocks. Every block gets all possible combinations of the two fac-
tors, as above (assigned at random within each block). For example:

Block IV Aa Ba Ab Bb
Block III Bb Aa Ba Ab
Block II Ba Bb Ab Aa
Block I Ab Aa Ba Bb

Equivalent to a design with two within-subjects factors (p. 115) (Block = Subject;
Treatment A and Treatment B are WS factors).

Source df SS F

Block B b-1 SS MS/MS
first factor F -1 SS: MS/MS:
second factor S s1 SS MSy/MS:
FxS (F1)(s-1) SSes MS-s/MSe
error E (fs-1)(b-1) SS

Total fsh—1 SSota
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Simply an extension of an RCB 2-way factorial (see above) to 3 factors. Therefore
equivalent to a design with three within-subjects factors (p. 118) (Block = Subject). If
our factor levels are A—C (first factor), 1-2 (second factor), a-b (third factor), we might
have this:

Block I Block II Block III

Cla B2a C2a Cla B2a Bla

Bla A2a Clb Bla B2b A2a

A2b Ala B2b A2a A2b Ala

Blb B2b Alb Ala Clb C2b

Alb C2a Blb A2b Cla Alb

C2b Cilb C2b B2a Blb C2a
Source df SS F
Block B b-1 SS MS/MS
first factor X x-1 SSi MS/MS:
second factor Y y-1 SSy MS,/MS:
third factor Z -1 SS, MS,/MS
XxY (x-1)(y-1) SSxy MSxy/MS
XxZ =D(z=D) SSy, MSz/MS
Y xZ (y-1)(z-1) SSyz MSyz/MSe
XxYxZ =D(y-1)(z-1) SSkvz  MSwz/MS
error E (xyz1)(b-1) SS
Total xyzb-1 SSota

Here' sapicture (partly for comparison to a split—split plot, see below):

Block 1 Block 2 Block 3
Ul U2 Ul Ul U2 Ul Ul Ul Ul
Vi \%2! Vi V2 Vi \ V2 Vi1 V1
w3 w1 Wl w3 w2 w1 w2 w3 Wl
Ul U U2 02 02 Ul U2 U2 U2
Vi1 V2 V2 Vi1 V2 Vi V2 \%2! V2
w2 W w2 W3 W3 Wi w2 w2 W3
U2 Ul Ul U2 Ul U2 U2 Ul U2
V2 A\ V2 V2 \%2! V2 V2 A% Vi1
Wi w2 w3 w2 w3 W1 Wi w2 Wi
u2 Ul u2 u2 Ul Ul u2 Ul Ul
\%! V2 Vi Vi Vi V2 Vi V2 V2
w2 Wi w3 W1 w2 w2 w3 w1 W3

Randomized complete block design with three blocks.

Factors are U (2 levels), V (2 levels), W (3 levels).

Every block is treated with all 12 combinations of W, V, and U in full factorial fashion.
The treatments are randomized within the 12 divisions of each block.

The main experimental units of a CRD (termed main plots) are divided further into sub-
plots to which another set of treatments are assigned at random. For example, suppose we
have pesticides A—C (main treatment), four plots (replications) per treatment (12 plots in
total), each divided into three subplots, and three fertilizers a— (subplot treatment). We
could have this:

Ala Alb Alc Blc Blb Bla A2b A2c A2a Cla Clc Clb
C2c C2a C2b A3b A3c A3a B2c B2a B2b C3b C3a C3c
B3b B3¢ B3a Ad4a Ad4c A4b C4c Cd4a C4b B4a B4b B4c

One plot (a plot is underlined) only experiences one main treatment, but experiences all
three subplot treatments.

Source df SS F
plot treatment T =1 SS; MS/MS,
error, main plots (Em) t(r-1) SSenm
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subplot treatment S s-1 SSs MSs/M S
SxT (t=1)(s-1) SSsr M Sst/M Sg
error, subplots (Es) t(r-1)(s-1) SSes

Total trs-1 SSota

Equivalent to a design with one between-subjects factor and one within-subjects factor
(p. 122) (plot treatment = BS factor, subplot treatment = WS factor; ‘plot’ = Subject).

The orchard is divided into units called blocks to account for any variation across the field
(sunny bit, shady bit, etc.). The blocks are then divided into plots. Treatments (e.g. pesti-
cides) are then assigned at random to the plots in the blocks, one treatment per plot. Each
block experiences each treatment. The plots are then divided into subplots and a further
set of treatments (e.g. fertilizer) are applied to the subplots, assigned at random. If the
blocks are -1V, the main plot treatments are A—C, and the subplot treatments are a—c, we
might have this:

Block-I Block-II Block-III Block-IV

Aa Ab Ac Bc Bb Ba Ab Ac Aa Ca Cc Cb
Cc Ca Cb Ab Ac Aa Bc Ba BDb Aa Ac Ab
Bb Bc Ba Cb Ca Cc Cc Ca Cb Ba Bb Bc

A main plot is underlined. The number of blocksis the number of replications.

Source df SS F

block B b-1 SSs MSs/M Sery
plot treatment T =1 SS; MS/MS,
error, main plots (Em) (t=1)(b-1) SSenm

subplot treatment S s1 SS MSs/M S
SxT (t=1)(s-1) SSsr M Ssr/M S
error, subplots (Es) t(b-1)(s-1) SSes

Tota ths-1 SSoota

This is a hierarchical design (p. 159—). The ‘relatedness factors are Block (plots are
related if they come from the same block) and Plot (subplots are related if they come from
the same plot).

The orchard is divided into blocks. The blocks are then divided into plots. Treatments (T,
e.g. pesticides) are then assigned at random to the plots in the blocks, one treatment per
plot. Each block experiences each treatment. The plots are then divided into subplots (or
split plots) and a further set of treatments (S, e.g. fertilizer) are assigned at random to the
subplots. The subplots are then further subdivided into split-subplots (or sub-subplots, or
split-split plots) and a third set of treatments (U, e.g. pruning technique) are assigned at
random to the split-subplots. If the blocks are I-11, the main plot treatments are A-B, the
subplot treatments are 1-2, and the split-subplot treatments are a—, we might have this:

Block I Treatment A + Treatment B

la 1b 1lc 2c¢c 2b 2a + 2b 2c¢ 2a la 1lc 1b
Block II Treatment B + Treatment A

lc la 1b 2b 2c¢c 2a + 2c 2a 2b 1b 1la 1c
Block III Treatment A + Treatment B

2b 2c¢ 2a la 1lc 1b + 1lc la 1b 2a 2b 2c

Here’'sapicture:
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sub-sub-plot ~ Block 1 Block 2 Block 3

-4 Al Al Al A2 A2 A2 Al Al Al

3 BI Bl Bl BI Bl BI B2 B2 B2

E c1 2 c3 a3 c1 2 2 c3 c1
3
=

Al Al Al A2 A2 A2 Al Al Al

B2 B2 B2 B2 B2 B2 BI BI BI

c3 2 cl 2 c3 cl J c3 2

A2 A2 A2 Al Al Al A2 A2 A2

B2 B2 B2 B2 B2 B2 BI B BI

c2 c3 cl a3 cl 2 c3 cl 2

AL oAa A Al Al Al A2 A2 A2

BI i Bl ! BI Bl Bl BI B2 B2 B2

c i@ 2 c1 [l c1 c1 [

Split-split plot, randomized complete block design.

The field is split into blocks.

Each block is split into two plots and factor A (2 levels) is assigned at random to the plots.
Each plot is split into two sub-plots and factor B (2 levels) is assigned at random to the sub-plots.
Each sub-plot is split into three sub-sub-plots and factor C (3 levels) is assigned at random to the sub-sub-plots.

Compare thisto an RCB 3-way factoria (see above).

Source df SS F

Between blocks:

block B b-1 SSs MSs/MSer,
Within blocks, between plots:

plot treatment T =1 SS; MS/MS,
error, main plots (Em) (t=1)(b-1) SSem

Within plots, between subplots:

subplot treatment S s1 SSg MSs/M Sg
SxT (s-1)(t-2) SSsr M Sst/M Sg
error, subplots (Es) t(b-1)(s-1) SSes

Within subplots:

split-subplot treatment U~ u-1 SSy MSU/MS,
UxT (u-1)(t=1) SSur MSy/MS,
UxS (-D(s-D) SSsr MSst/M S,
UxSxT (-D)(s-)(t-1) SSysr MSust/MSg,
error, split-subplots (Eu)  ts(b-1)(u-1) SSes

Tota ths-1 SSoia

This is a hierarchical design with three levels of ‘relatedness (p. 159—). They are
Block (plots are related if they come from the same block), Plot (subplots are related if
they come from the same plot), and Subplot (split-subplots are related if they come from
the same subplot). This is one hierarchical level more than the basic split-split plot design
(based on a CRD rather than an RCB), discussed above.

Two sets of treatments are randomized across each other in strips in an otherwise RCB
design. So the orchard is divided into blocks, and the blocks are divided in an North—
South direction and an East—-West direction. One treatment (pesticide, A—C) is assigned
randomly to the blocks in the North-South direction, so each block experiences all treat-
ments. The other treatment (fertilizer, 1-2) is assigned randomly to the blocks in an East—

West direction; again, each block experiences all treatments. It might look like this:

Block I Block II Block III
Al A2 c2 C1 Bl B2
Bl B2 A2 Al c1 C2
c1 C2 B2 Bl Al A2
Source df SS F
block B b-1 S MSs/MSrg
treatment T =1 SS; MS:/MSs
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TxB (t-1)(b-1) SSr

cross-treatment C 1 SSc MS/MSc,e
CxB (c-1)(b-1) SSc.s

CxT (C—l) (t—l) SS(><T M SCXT/ M SE
error, E (t=D)(c-1)(b-1) SS

Total tch—1 SSota

Equivalent to a design with two within-subjects factors (Block = Subject). Compare the
full model for two within-subjects factors discussed earlier (p. 115).

The researcher applies one treatment to al the trees in a row, the next treatment to all the
trees in the next row, etc. There are (say) 4 trees per row.

Row T A A A A
Row II B B B B
Row III c Cc C ¢C
Row IV D D D D

The researcher hoped that the experiment was being replicated by having four trees per
row, but the researcher has cocked up. Row is confounded with treatment, so we can’t
analyse this. (The split-block design is one way of applying treatments to whole rows,

properly.)
There are frequent psychology equivalents, but that’s not a good thing.

The orchard is divided into plots. Each plot has a certain amount of fertilizer applied —
treated as a continuous variable. Treatments are assigned to plots a random. If the ex-
perimenter uses O, 1, 2, and 5 kg of fertilizer, and has four plots per fertilizer condition
(replicates a—d), the orchard might look like this:

5a 2a 0a 5b
la 5c 1b 0b
2b 1lc 0c 2c
0d 5d 24 1d

The researcher expects a linear relationship between fertilizer amount and the dependent
variable.

Source df SS F
regresson R 1 SS: MS/MS
error E tr-2 SS

Total tr—1 SSota

My comment: of course, there is no absolute requirement to have four plots with 0 kg,
four plots with 2 kg, and so on; you could have one plot with O kg, one with 0.5 kg, one
with 1 kg...

Equivalent to simple (i.e. between subjects) linear regression (see p. 135).

The orchard is divided into plots. One treatment factor (pesticide A or B) is crossed with a
continuously-measured treatment (fertilizer: 1, 2, 5 kg). There are four plots (replications
a—d) per pesticide/fertilizer combination. So we might have this:

5Aa 2Aa 5Ba 5Ab 2Ba 1Ba
1Bb 1Aa 2Bb 2Ab 1BcC 1Ab
5Ac 2Bc 2Ac 1Ac 5Bb 5Bc
1Ad 5Bd S5Ad 1Bd 2Bd 2Ad

Source df SS F

treatment T =1 SS; MS/MS:
regression R 1 S& MS/MS
TxR t-1 SSk MSrr/MS:
error E t(gr—2) SS
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Tota tor-1 SSota
where q is the number of levels of the continuousy-measured thing that you're using as a
linear predictor (fertilizer, in this example). The T x R interaction measures whether the

regression slope differs across treatments.

Equivalent to ANCOVA with one between-subjects covariate and one between-subjects
factor, in which the covariate and factor interaction isincluded (p. 144).

The orchard is divided into plots, and treatments A—D are applied to the plots at random
(thisis a CRD). Then an independent factor (e.g. soil nitrogen) will be measured for each
plot. Suppose there are four replications (1-4; four plots for each level of the treatment).
We might then have thislayout:

Al Bl Cl1 A2
D1 A3 D2 (2
B2 D3 C3 B3
C4 A4 B4 D4

WEe Il also measure the covariate (nitrogen) in each plot. Thisisthe ANOVA table:

Source df SS F
covariate C 1 SSc MS/MS
adjusted treatment T t=1 SSr MS/MS:
error E t(r-1)-1 SS:

Total tr—1 SSiota

where r is the number of replications per treatment. The treatment effect is adjusted for
the effects of the covariate.

Equivalent to ANCOVA with one between-subjects covariate and one between-subjects
factor, in which the covariate and factor interaction is not included (p. 138).

We have three orchards, widely separated — a location factor. We divide each orchard
into blocks. We assign the levels of our treatment to plots within those blocks, each treat-
ment once per block. (The number of blocks is the number of replications.) For example,
if our treatments are A—C, we might have this:

Location 1 Location 2

Block I II III Block I II III
A B C B c B
B A B A B c
c c A c A A
Location 3
Block I II III
A c A
c B c
B A B
Source df SS F
location L -1 SS MS /M
error for locations, El I(b-1) SSy
treatment T =1 SS; MS/MS:
TxL (t=1)(-2) SSr. MS, /MS
error E I(t=1)(b-1) SS
Total Ith—1 SSta

Comment: thisis again equivalent to a design with one between-subjects factor and one
within-subjects factor (p. 122) (Block = Subject). Location is the ‘ between-blocks’ factor
and Treatment is the ‘within-blocks' factor. Therefore, it's also analytically equivalent to
the ‘split plot on a CRD’ design above.
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Merely one example of repeating a design in time... The orchard is divided into blocks;
treatments are assigned at random to plots within those blocks (each treatment once per
block, so the number of blocks is the number of replications) and everything is measured
three times.

t=1 Block I A
Block II F
Block III C

w > w
e
vos]
g
@

t=2 Block I A
Block II F
Block III C

w3 w
e
vs]
g
N

£=3 Block I A B D
Block II F A E B D C
Block III C B A

The appropriate ANOV A depends on the effect of time. The following assumes that there
is no more correlation between samples taken closer together in time than between those
taken further apart in time (a‘ split-plot in time’).

Source df SS F

block B b-1 SS MS/MS,
treatment T =1 SS; MS/MS,,
error, main (Em) (1) (b-1) SSenm

timeZz 1 SS, MS,/M S
time x block (Z x B) (=) (b-1) SSs MSze/MS:
timextreatment (ZxT) (z1)(t-1) SSyr MSt/MS
error, E (=D (t-1)(b-1) SS

Tota btz1 SSiota

where zis the number of times that measurements are taken.

Comment 1: equivalent to a design with two within-subjects factors (p. 115). If Block =
Subject, then Treatment is a within-subjects factor and Time is another within-subjects
factor. The ‘error, main (Em)’ term is Treatment x Block, and the ‘error, E' term is Time
x Treatment x Block. The design above is the same as the full model for two within-
subjects factors discussed earlier (p. 115), except that the agricultural design as quoted
here (Tangren, 2002) tests Z against ZxTxB rather than ZxB, which is a bit odd. Compare
the split-block design above.

Comment 2: the assumption that there is ‘no more correlation between samples taken
closer together in time than between those taken further apart in time’ is a (strong) version
of the assumption of sphericity that we've met before in the context of within-subjects
designs (p. 25). Time is a within-subjects factor that frequently leads to violations of the
sphericity assumption.
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8 Mathematics, revision and advanced

8.1 Matrices

Before we can examine a general linear model, it helps to understand matrix nota-
tion.

8.1.1 Matrix notation

OK, a quick reminder... This is mostly from Myers & Well (1995, Appendix C)
with some additional notes from www.mathworld.com. A plain number, or a symbol
that represents one, is caled a scalar (e.g. 12, -3.5, ¢, X). A vector is a one-
dimensional array of elements, e.g.

5
13
u=| 2 |orv=[3 28 19 -8 0 4]
—4
17

Here, we would call u a column vector and v a row vector. A matrix is a two-
dimensiona array:

(2 5 8]
316
Y=(2 41
7 2 3
19 6 5]

(More generally, a scalar is a O-rank tensor; a vector is a 1-rank tensor, having one
‘index’; amatrix isa 2-rank tensor; and so on.)

Matrices are frequently denoted with bold-face type. The number of rows and col-
umns is referred to as the order of the matrix; the matrix Y has order 5 x 3 (rows x
columns). Souisab x 1 matrix and v isal x 6 matrix. We can refer to an element
by using subscripts in the format element; oy coumn- FOr €xample, if we take this ma-

trix:
q; dp 0 G
a a cee a
A| B1 P2 2,n
& ¢
8n1i @z 0 Amnp

then a, . refers to the element in the rth row and the cth column of A. Sometimes the
commais missed out (ac).

The transpose of matrix A iswritten A’ or AT. The transpose of a matrix is obtained
by swapping the rows and columns. So the transpose of Y is

YT =

o o1 N
(200 N OV ]
R A~ DN
w N N
g o O
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A matrix with equal numbers of rows and columns is called a square matrix. A
matrix A such that A = AT is called a symmetric matrix. In a symmetric matrix,
likethis:

7 2 8
2 9 3
8 3 4

for every element, &; = &;. If thisis true, then the elements are symmetrical about
the major (leading) diagonal of the matrix, which is the diagonal that extends from
the top left to the bottom right. Matrices that have nonzero elements along their
major diagonals but only zeros as off-diagonal elements are called diagonal matri-
ces.

The identity matrix is a special sguare, diagonal matrix that has 1s along the major
diagonal and Os el sewhere, such asthe 3 x 3 identity matrix:

1
=0
0

o +— O

0
0
1

8.1.2 Matrix algebra

e Equality. A =B if a; = by for al i and j. That is, for two matrices to be equal
they must have the same order and identical elements.

e Addition. Two matrices may be added if and only if they are of the same order.
C=A+Bifcgj=a;+by;foraliandj. For example,

a b g h a+g b+h
c d|+|i jl=|c+i d+]
e f k | e+k f+l

e  Subtraction. Two matrices may be added if and only if they are of the same or-
der. C=A —-Bif ¢j = &; — Db for all i and j. For example,

a b g h a-g b-h
c d|-|i jl=|c—i d—j
e f k | e-k f-I

e Scalar multiplication. To multiply a matrix by a scalar, multiple every element
in the matrix by the scalar. For example,

ab c xa xXb xc
xd e f|=|xd xe xf
g h i xg xh xi

e |tisnot possible to add a scalar to a matrix or to subtract a scalar from a matrix.

e Matrix multiplication. To multiply matrix A by matrix B, giving the result AB
= A x B, there must be the same number of columnsin A asthere arerowsin B.
The simplest case is multiplying arow by a column vector, which gives a scalar
product:

d
[a b c|x| e|=ad+be+cf
f

197
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In general, the product C of two matrices A and B is defined by
Cik = aijby

where j is summed over for al possible values of i and k (this short-hand nota-
tion is known as Einstein summation). We could expand that formula:

Cik = 2 &by
i

The number of columnsin A must equal the number of rows in B. If you
multiple an x x y matrix by ay x z matrix, you get an X x z matrix. For example,

a b c j Kk aj+bl+cn ak+bm+co
d e f|x|{I m|=|dj+d+fn dk+em+ fo
g h i n o gi+hl+in gk+hm+io

Not al matrices may be multiplied by each other. Matrix multiplication is not
commutative: AB is not necessarily the same as BA. (If A and B are inter-
preted as linear transformations, then AB isthe linear transformation in which B
is applied first, and then A.) In fact, if AB is defined, BA may not even be de-
fined, if the number of rows and columns do not match appropriately.

However, matrix multiplication is associative: A(BC) = (AB)C = ABC.

Matrix multiplicationis also distributive: A(B+C) = AB + AC.

Multiplication by the identity matrix leaves the original matrix unchanged: 1A =
Al = A. Note that the order of the identity matrix that premultiplies A (I1A) does

not have to be the same as the order of the identity matrix that postmultiplies it
(Al), asinthis example:

a b 10 1 00| |a b a b
cdx{()l}:Olecd:cd
e f 0 01 e f e f

Matrix multiplication is useful in expressing systems of simultaneous equations.
Suppose

.
x=|y
Z_
k
k=|4
7_
9 11 7
D=1 8 12
4 4 9

then the matrix equation Dx = k indicates that

Ix+1ly+7z=1
X+8y+12z=4
4x+4y+9z=7

so the matrix equation represents a set of three simultaneous scalar equations.
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e Moreobscure ways of multiplying matrices. There are, of course, other ways
to multiply matrices; the one discussed above is the ‘ordinary’ matrix product
(www.sciencedaily.com/encyclopedia/matrix_multiplication). Another is the
Hadamard product. For two matrices of the same dimension (m x n), the
Hadamard product A-B is given by (A-B);; = Ajj x B;;. It'srarely used in linear
algebra. There's another, too; if A isan nx p matrix and B is an m x q matrix,
the Kronecker product A®B (also known as the direct product or the tensor
product) isan mn x pq matrix:

aB a,B - 3B

aB a,,B - a, B
A®B = 2,:1 2,:2 ) 2,.p

a,.B a,,B - a,,B

We won't mention these further.
8.1.3 Theinverse of a matrix

Dividing a scalar b by another scalar a is equivalent to multiplying b by 1/a or a™,
the reciprocal or inverse of a. The product of a and its inverse, a~a = aa” = 1.
Analogously, a square matrix A issaid to have an inverse if we can find a matrix
A™ such that

AAT=ATIA =

Thisis handy for solving systems of simultaneous equations; if the equation Ax = k
represents a system of scalar equations (discussed above), then we can solve the
equations by premultiplying both sides of the equation by A™:

AAx =A%
Ix =A%k
x = Ak

Not al matrices have inverses. Matrices that have inverses are called nonsingu-
lar; matrices that do not have inverses are called singular. Only square matrices
can have inverses, but not all square matrices do.

A matrix will have an inverse only if its rows and columns are linearly independ-
ent. This is true if no row can be expressed as a linear combination of the other
rows, and no column can be expressed as a linear combination of the other columns.
(If one row is twice another, for example, the rows are linearly dependent and the
matrix will have no inverse.)

Calculating the inverse of amatrix can be hard. To find the inverse of a2 x 2 matrix,
thereisasimple formula:
A=
cd

a1 1[d -b]__1 [d -b
_|A| -¢c al| ad-bc|l-c a

where |A| is called the deter minant of A; clearly, the inverse is only defined if the
determinant is non-zero. So amatrix issingular if its determinant is zero. To find the
determinant or inverse of a3 x 3 matrix or higher, see www.mathworld.com.

8.1.4. Matrix transposition

See
www.mathworld.com/ Transpose.html
planetmath.org/ encyclopedia/ Transpose.html
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As we saw above, the transpose of a matrix is what you get when you swap al
elements a;; with a;.

(A=A

(cA)" = cAT where cisa constant

If A isinvertible, then (AT) ™ =(A™T
(A+B)"=AT+BT

Pretty obvious. C = A + B if ¢; = &; + by for &l i and j. Therefore, C'" has Gji =
a; + by. But AT has members a; and B' has members by, so D = A" + BT has
members d; = a; + b;. Swap the letters i and j over, and the definition of D is
the same as that of CT; therefore, (A+B)" = AT +BT.

(AB)T =BTAT; the transpose of a product is the product of the transposes in
reverse order. Proof:

(BTAT)ij = (bT)ik(aT)kj
=Dbgajx
= auhy
=(AB);
= (AB);]

where Einstein summation has been used to sum over repeated indices implic-
itly; in Einstein’s notation, for example,

a3 =23

and
ey = izaikaij

(see www.mathworld.com/ EinsteinSummation.html).

ATB=(B'A)" and AB" =(BAT)". These follow directly from the preceding
results, since
ATB = AT(BT )T
= (BTA)T

8.2. Calculus
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8.2.1. Derivatives

Remember that a derivative of afunction f(x), written in one of these ways:

f'(x)s%sif(x)

is the rate of change of f with respect to whatever parameters it may have (that is,
with respect to x). Formally,

F(x)= Hn?) f(x+ hr:— f(x)



8.2.2. Simple, non-trigonometric derivatives

diax“ =anx" (thepower rule)
X
d
—Inx==
dx
iex — eX
dx
iax _ ielnaX _ iexlna _ (Ina)exlna _ (lna)ax
dx dx dx

8.2.3. Rulesfor differentiation

Derivatives of sums are equal to the sum of derivatives:

i f(X)+...+h(x) = f'(X)+...+h'(x)
dx

If cisaconstant,

d ..o
S0 =c"(9)

The product rule:

%f(x)g(x) =f(¥)g'()+ F'(xg(x)

The chain rule:

dy
dy _dy du_ du
dx dudx dx
du
8.2.4. Derivatives of a vector function
The derivative of avector function
f1(X)
f
F = 2
f (¥
isgiven by
dfy
dx
dF | dfz
ax | %
dfy

dx

8.2.5. Partial derivatives

8: Maths, revision and advanced

If afunction has several parameters, such as f(x,y), we can define the partial deriva-
tive. This is the derivative when all parameters except the variable of interest are
held constant during the differentiation. The partial derivative of f(x,y) with respect

to X iswritten

of 0
—=—"fxy)=f,
ox oX (x.Y)

Formally,

201



8: Maths, revision and advanced

&

_of 1 nl _ . f(a+hg)-f(@)
Dif(a)_aa,-_tlwl—rg)h f a,-jrh f(a) _tl1|_r>r(1)—h

a,

where & iscalled the ‘standard basis vector’ of theith variable (thisis a vector with

alinpositioni and zeros in every other position, | would infer). Calculating partial
derivatives with respect to x is easy: you treat everything except x as being a con-
stant. For example, if

f =x2+2xy+y2+ vz

then

of

—=2X+2

oX y

a—f =2X+ 2y+3y22

dy

of 3

oz y
8.2.6. The chain rulefor partial derivatives

The general form of the chain rule, using partial derivatives, is:.

df oot dx
ds T ox ds

planetmath.org/encyclopedia/Derivative2.html
planetmath.org/ encyclopedia/ Partial Derivative.html
www.mathworld.com/Derivative.html
phy.asu.edu/ phy501-shumway/notes/lecl.pdf

8.2.7. lllugtrations of partial derivatives

Suppose we have the function f = 2x+3xy? . Its partial derivatives with respect to x
andy are:
of

—=2+3y?
oX y
of

Y _6

ay X

We can illustrate the whole function:
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Plot of f = 2x+3xy?

I et

S e
S e
gty

L7
... Pty
P iy (i o
e

of of
a—f:2+3y2, shown at y = -5, where a—f:77 — =6xy, shown at x=0, where — =0
oX X oy oy

Tix, ¥l o

of of
a—f: 2+3y?, shown at y = +3, where a—f: 29 — =6xy, shown a x = 7, where — =42y
X ox ay ay

If you're wondering how you'd find the direction in which a ball would roll down
this dope (the direction in which the gradient is maximum), and the gradient in that
direction, that’s given by the vector gradient (‘grad’), denoted Vf =grad(f). De-

tails at www.mathworld.com/Gradient.html.
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8.3. Solving a GLM (an overdetermined system of equations) (advanced)

Solving a GLM is the the problem of solving y = Xb+e for b so asto minimize the

sum of squares of theresiduals, > (Y; — \?) or Y qz . When thisis solved, b contains
the correct regression coefficients. Note that we can write an expression for e

y=Xb+e
e=y-Xb

The error (residual) sum of sguares can be written like this:

SSyror = Zqz
€
e=| %
e,

e'=le & .. &
ele=g’+e5+..+e2 =Y’ =SS, o

We can also write it like this:

SSyer =€'€
= (y—Xb)" (y—Xb) from definition of e above
=(y" —(Xb)")(y—Xb) using (A+B)T =AT +BT
=yTy-yT(Xb)—(Xb)"y +(Xb)" Xb multiplying out
=yTy—((Xb)Ty)" —=b"XTy +(Xb)" Xb using ATB=(BTA)"
=yTy-(O"X"y)" ~b"XTy +b"X"Xb using (AB)" =B'AT twice
—yTy—b™XTy—b™XTy +b"XTXb beC?g;e rﬁbte?marilg tr?:nséme(;ja?
=yTy—20"XTy+b"X"Xb to itstranspose

To minimize the sum of squares, we solve so that the partial derivative of the sum
of squares with respect to the model parameters (b) is zero. To do this, we will need
to use an partial derivative analogue of the product rule for differentiation, which is

%f(x)g(x) = f()g'()+ F'(x)g(x)

The vector b is a set of parameters by, by, ... by ... b,. We differentiate with respect
to each b;. The partia derivative of b with respect to b; is avector with a1l in the ith
position and 0 in every other position (see section on partial derivatives, and deriva-
tives of a vector function). We call that vector & (the ‘standard basis vector’); | will

use this notation to avoid confusion with the error vector e.

-
b,| |0

d J|: o

o omg |18
o) lo

Similarly,



9

bT —&T
o o
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Armed with this notation, we can obtain the partial derivative of SSy,o,, Which we

wish to be equal to zero:

SSeror =Y 'Y-2b"XTy+bTX Xb
aSSerror :i
db db
=0-28"XTy+({8"X"Xb+bTX X8 )

yTy—2b"XTy+b"X"Xb

.
—0-28"X"y+&"X Xb+( ToTXT x))

;
TT
_02€~,Xy+e~,XXbJ{T( ]J

=0-28"XTy+8"X"Xb+(&" xTbe)

=0-28"XTy+& X Xb+(8"X"Xb)
=0-28"XTy+&"X"Xb+&" (X"X)'b
=-28"XTy+28"X"Xb
=0
Rearranging:
—28"XTy+28"X"Xb=0
28"X"Xb=28"X"y
éTxTxbzéTxTy

Let’sdo thisin full.

« Thefirst term (y'y) contains no
terms involving b; so is treated
as a constant. The second is
simple. The third has two
terms involving by, namely b"
and b, so we use the product
rule, differentiating with re-
spect to each in turn.

For the expansion of the right-
hand term, we use

(AB)" =BTAT in the form
AB=(B'TAT)".

Next, from ATB=(BTA)" it
followsthat (X"X)" =X"X .

Each term is a real number, and
therefore equal to its transpose.

This says that the ith element of X"Xb is equal to the ith element of X"y . Since

that istrue for all values of i, we have the equality

XTXb=XTy

These equations (since the things in the expression above are matrices, they repre-
sent more than one equation) are known as the normal equations of the linear least-

squares problem. If we can find the inverse of X"X , and remembering that matrix
multiplication is associative — A(BC) = (AB)C = ABC — we can derive this ex-
pression for b:

(XTX)IXTXb = (XTX)XTy
b=(X"X)XTy
Therefore, our optimal model b that minimizes the SSy,, is given by
b=(X"X)*XTy
Magic. Of course, the solution can only be found if X'X is invertible (which may
not be the case if your design matrix contains linearly dependent columns, as with

overparametrized design matrices).

For terse versions of these derivations, see
e www.me.psu.edu/sommer/workarea/least_sguares.doc
e www.stat.wisc.edu/p/stat/ course/ st333-larget/ public/html/matrix.pdf
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8.4. Singular value decomposition to solve GLMs (very advanced)
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Singular value decomposition (SVD) is a method that can solve arbitrary GLMs —
ones in which we have more information that we need (as is the case in ANOVA),
and also ones in which we have exactly the right amount of information, and onesin
which we have insufficient information.

When we solve a GLM, we normally have more measurements than we'd need to
determine the values of our predictors — the model is y = Xb+e, it's overdeter-

mined (e # 0), and we solve it by minimizing the sum of squares of the errors (e'e).
We can often solve it using the normal equations given above (X'Xb= X"y, or

b=X"X)1XTy).

When we solve a simple set of equations that are exactly determined, we solve
y =Xb (giving b = X'y). This is equivalent to the method for an overdetermined

problem, except that e = 0 (our predictions are exact and there is no residual error).

What happensif we don’'t have enough information? Then our model y = Xb isun-

derdetermined. Yet if we make assumptions about the world, we can still get useful
information out.

For example, suppose we're performing a CT scan. We scan a single dlice of the
body. We want to find a set of X-ray absorbances b, one absorbance per voxel. We
know which voxels each X-ray beam passes through (X), and we know the sum of
absorbances for each beam (y), assuming some radiation manages to get through (if
the X-ray beam is completely absorbed, the maths is harder, which may be why
metal causes funny streaky shadows on CT scans). | would guess that CT scans are
normally overdetermined, or perhaps exactly determined (though | reckon probably
not — it'd be easier to design a machine that made overdetermined scans and the re-
sults would probably better, although the price is a bit of time and a bit of unneces-
sary X-ray radiation). What happens if we had an undetermined situation — like
trying to interpret 3D structure from an antero-posterior (AP) and a lateral chest X-
ray only? Or like shooting a CT scan from too few directions?

We could assume that tissue is homogeneous unless we receive better information.
That corresponds to minimizing the sum of squares of b (ZQZ ). A very simple ex-
ample: suppose x+y=10. This has an infinite number of solutions. But the one
that minimizes x> + y? isx = 5, y = 5. In general, we may wish to minimize both
Ze«,z and Zb.2 . A general technique for thisis called singular value decomposi-

tion (SVD). | won't present it in full, because | don’t understand it in full, but it goes
like this.

8.4.1. Eigenvectors and eigenvalues

If A isamatrix and if thereis acolumn vector X # 0 such that

or (A —Al)Xg =0 wherel istheidentity matrix

for some scalar A, then A is called the eigenvalue of A with the corresponding
(right) eigenvector Xg. (German: ‘eigen’ = appropriate, innate, own, peculiar.) That
is, an eigenvector is a vector whose direction is unchanged by the transformation A;
it is merely stretched by a factor (the eigenvalue). For example, if the matrix repre-
sents rotation, it has no eigenvectors. If it represents reflection in a plane, then every
vector lying in that plane is an eigenvector, with eigenvalue 1, and any vector per-
pendicular to the plane will be an eigenvector with eigenvalue —1; these are the only
eigenvectors. If the matrix represents 2D reflection (reflection in aline), then vectors
lying along that line will be eigenvectors with eigenvalue 1, and vectors perpen-
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dicular to that line will be eigenvectors with eigenvalue —1; these are the only eigen-
vectors. If the matrix represents simultaneous enlargement parallel to the X axisby a
factor of a, parallel to the Y axis by afactor of b, and parallel to the Z axis by a fac-
tor of ¢, with a # b # ¢, so the matrix looks like

a 0 o0
0O b O
0 0 c

then vectors along either the X axis, the Y axis, or the Z axis will be eigenvectors
(and these are the only eigenvectors), and their eigenvalues will be a, b, and ¢ re-
spectively. To find eigenvalues, note that if (A —Al)Xg and Xr # 0 then (A -Al)
must be singular, so solvedet(A — A1) =0 to get the eigenvalues, and thus the ei-
genvectors.

Less commonly used: The left eigenvector is arow vector that satisfies X; A = AX
or (A-AX, =0, wherel isthe identity matrix. The eigenvalues for the left and

right eigenvectors are the same, although the left and right eigenvectors themselves
need not be. When people use the term ‘eigenvector’ on its own they generally mean
‘right eigenvector’.

A square matrix A can often be decomposed (‘diagonalised’) into its eigenvalues
and eigenvectors, which are linearly independent. That is,

A=pPDP!
where P isamatrix of eigenvectorsand D is a diagonal matrix of eigenvalues.
See
www.mathworld.com/Eigenvalue.html
www.mathworld.com/ Eigenvector.html
www.mathworld.com/ EigenDecomposition.html
8.4.2. Singular value decomposition
Any mx n matrix X can be decomposed into
X=Usv'

where

e U isan mx m orthogonal matrix (a matrix M is orthogonal if MM " =1, i.e. if
MT =M™); the columns of U are the eigenvectors of AA".

e Visannx northogona matrix; the columns of V are the eigenvectors of ATA.

e Sisanmx n matrix containing a diagonal matrix (a matrix that has nonzero
elements along its major diagonal but only zeros elsewhere) with real, non-
negative elements o; (where i is from 1 to the minimum of m and n) in de-

scending order:

01>03>...> Opin(mn) >0

The o, elements themselves (the ‘singular values') are sgquare roots of eigen-

values from AAT or ATA. To create S, we first create a diagonal matrix X, con-
taining these o, elements:
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o, O 0
0 o 0
0 o - O-min( m,n)

Then we pad it with zeros to make S an m x n matrix:

. .
S:{O} if m>nand S=[X 0]if m<n

Once we've found the matrices such that X = USV ", we can then solve our prob-
lem. Since U and V are orthogonal, their inverses are equal to their transposes. Since
Sisdiagonal, itsinverse is the diagonal matrix whose elements are the reciprocal of
the elements of S.

X—l — (Us\/T)—l — (VT)—ls—lu—l — VS_lUT

where the diagonal elements of S* are 1/S [that is, S™* = diag(1/S)]. Therefore,
since y = Xb, wehave b = X'y and hence

b=vstiuTy

It is possible to solve equations even if the matrices are singular or close to singular
using this technique: when you obtain S, by taking the values 1/, if S is smaller
than a threshold value (the singularity threshold) you replace 1/S with 0. That is,
SVD finds the least squares best compromise solution of the linear equation system.
For details and proof, see Press et al. (1992, pp. 59-70, 676-680) and

rkb.home.cern.ch/rkb/ AN16pp/node265.html
www.mlahanas.de/Math/svd.htm

8.4.3. An underdetermined set of equations: the role of expectations

(RNC, April 2004.) Alternatively, we might have prior expectations — in our ra-
diological example, we expect to find a heart, we expect that ribs curve round the
side, and so on. We might say that we'd like to interpret the data to fit our expecta-
tions as far as possible. If our prior expectations are p, then this would correspond to
minimizing the sum of squares of (b —p). We can say that b = p + d, where d repre-
sents the deviation from prior expectations. Thus,

y=Xb
=X(p+d)
=Xp+Xd

y—Xp=Xd

The usual singular value decomposition X =USV " is used to solve y = Xb for b,
minimizing the sum of squares of b when the system is underdetermined; the solu-
tionisgiven by b=VS?UTy . In the present case, we use the same decomposition
of X and simply rewrite to solve for d, minimizing its sum of squares:

d=VS*UT(y-Xp)
and thereforesince b=p+d,

b=p+VSIUT(y-Xp)
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8.5 Random variables, means, and variances

209

8.5.1 Summation

If we have n scores we could denote them X3, Xo, ... X,. Their sum can be written in
the following ways:

><1+x2+...+xn=§1xi

The following are easily proved. If cisa constant, then

> CX=CY X
n
>c=nc
i=1

The summation sign operates like a multiplier on quantities within parentheses. For
example:

n n n
PACERIEDREDNY
i=1 i=1 i=1
Y(x-y)2 =2 X+ y? + 25 xy
8.5.2 Random variables; definition of mean and variance

A random variable (RV) is a measurable or countable quantity that can take any of
a range of values and which has a probability distribution associated with it, i.e.
there is a means of giving the probability of the variable taking a particular value. If
the values an RV can take are real numbers (i.e. an infinite number of possibilities)
then the RV is said to be continuous; otherwise it is discrete. The probability that a
discrete RV X has the value x is denoted P(x). We can then define the mean or ex-
pected value:
E[X] =2 xP(x)

and the variance:

var[X] = E[(x— E[X])?]
=¥ (x—E[X])’P(¥)
=¥ (x* = 2xE[ X] + (E[ X])*) P(X)
=3 X2P(x) - ¥ 2xP(X) E[ X] + = (E[ X])?P(X)
=Y X°P(X) - 2E[ X]E[ X] + (E[ X])®Z P(X)
=¥ X*P(xX) - 2(E[X])* + (E[X])?
= E[X*] - (E[X])

and the standard deviation, o:
o’ =Var[X]
8.5.3 Continuous random variables

For a continuous random variable X, the probability P(x) of an exact value x occur-
ring is zero, so we must work with the probability density function (PDF), f(x). This
is defined as

P(a< be)z?f(x)dx
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Tf(xdx=1

vx: f(x)=>0

(¥x means ‘for al values of X’). The mean or expected value E[X] is defined as

E[X] = | xf (x)dx

—oo

The variance, Var[X] isgiven by

Var[X] = szf(X)dX—(E[X])Z

—oo

The cumulative distribution function (CDF, also known as the ‘ distribution function’
or ‘cumulative density function’), F(a), is given by

F(a)= [ f()dx

—oco

F(a)=P(x<a)
P(asx<h)=F(b)-F(a)

8.5.4 Expected values
If Xisarandom variable and c is a constant, E(X) denotes the expected value of X.

E(c)=c
E(cX) =cE(X)

E() actslikeamultiplier. For example:

E(X +Y) = E(X) + E(Y)
E(X +¢)=E(X)+E(c)=E(X)+c
E[(X +Y)?] = E(X)? + E(Y)? + 2E(XY)

If X and Y are independently distributed, then
E(XY) = E(X)E(Y)
8.5.5 The sample mean and SD are unbiased estimators of # and ¢°

We will use X to denote the random variable, x for an individua value of that ran-
dom variable, X for the sample mean, si for the sample variance (sometimes writ-

ten 6)2<), Mty for the population mean, and a)2< for the population variance. First,
the mean:

_ X 1 1 1
E(X) = E(Z—}—E@x) = LY E(X) = 2nE(X) = E(X) = 4
n n n n
Now the standard deviation (Myers & Well, 1995, p. 592). Consider first the nu-
merator (the sum of squares) [N.B. line 3 usesthefact Y (x—u) =n(X—u)1:
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E[ (x—%)°] = EX[(x- ) - (x— ) [
= E[X (x— )? + £ (X— 1)* = 2(X— 1) (x— p2)]
= E[X(x—#)* +n(X— u)” = 2n(X - 11)°]
= E[>(x- #)” = n(X- u)*]
=Y E(x— ) = nE(X— 1)
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The average squared deviation of a quantity from its average is a variance; that is,

E(x—u)* = 0%
and, by the Central Limit Theorem,

2
E(x-u)’ =0} =%

Therefore,
2
E[S (x-%)?] =no% - 19X
n
=(n-1o2
Hence
X — X)2
o 20 e -3

8.5.6 Variance laws

If X and Y are two random variables with variances V(X) = o and V(Y) = o2, and

c isaconstant, then
V(c)=0

V(X +¢)=V(X)=0%
V(cX) =V (X) =c?c%

V(X +Y) =03,y = 0% + 07 +2py, 05Ty

V(X =Y)=0%_y = 0% +07 —2pyy0x 0y

where p is the correlation between X and Y; pyyOx 0Oy is aso known as the covari-

ance.
COVyxy = PxyOx Oy

Therefore, if X and Y are independent,

Pxy =0
CoVyy =0

V(X +Y) :0')2(+Y =O'>2( +0'$

V(X -Y)=0% y =0% +02

8.5.7 Distribution of a set of means: the standard error of the mean

See Frank & Althoen (1994, pp. 281-289). Let X;, X;, ... Xy be a set of sample
means. Then X isthe mean of al those sample means. First we derive the density

function of X .
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If we sample n values from a random variable, calling them Xy, X»... X,, then
their mean is

or

1
X==—(X+X,+---+X,)
n

Likewise, for a set of n random variables Xy, X,... X,

c 1 1 1 1
X=—(X;+ X, +-+ X )=—X;+=X,+---+—X
n( 1 2 n) n 1 n 2 n n
Let
vv,:lx,
n
then

X =W, +W, +---+W,

If Xq, X5... X, are independent and identically distributed, as when observations are
independent, then Wy, W.... W, are likewise independent and identically distributed.
The mean X can therefore be expressed as the sum of n independent, identically
distributed random variables, W.

The Central Limit Theorem tells us that if W, W, ... W, are independent, identi-
caly distributed random variables and Y = W; + W, + ... + W, then the probability
density function of Y approaches the normal distribution

—(y-#y)?
202

asS N — oo,

Next we derive the expected value of the sample mean, E(X). (We saw one deriva-
tion above; thisisafuller version.) Since

X ==(Xy+ Xo+-+X,)
it follows that

E(X)= E(E(X1+ Xy 4ot Xn)jzlE(Xl+ Xyt t X,)
n n

From the Algebra of Expectations, the expected value of a sum is egua to the sum
of the expected values. So if E(Xy) = 1, E(X2) = o, E(X) = 1, €tC., then

E(X)= - B+ g b+ )
n

Let us suppose the population mean is u. Since the distributions of X, X5, ... X, are
all identical to the population distribution, it follows that all n random variables have
the same expected value:

Ha=Hp= = fly = H
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E(X)= ZE(u+ g+ pt) = —rps =
n n

So the expected value of the sample mean (the mean of a set of sample means) is
equal to the population mean.

How about the variance of X ?

X==(Xy+ X+ X))

S|

v(i):v(l(xﬁ Xy 4ot xn)j
n
When you factor a constant out of a variance, it's squared:

v(i):izv(xl+x2+---+xn)
n

The variance of a sum of n independent random variables is the sum of the individ-
ual variances. If V(X,)=0%, V(X,)=03, ..., V(X,)= 02, then

V(X + X4+ X, )=0f + 0% +---+02

V(X):n—12(0f+0'22+-~+0'§)

and since the variables representing our n observations al have the same distribution
as the parent population, they must all have the same variance, namely ¢, the popu-
lation variance. So
= 1 2 0'2
VIX)=—INo“|)]=—
()= No?)=2

So for samples of n independent observations, the variance of the sample means is
equal to the population variance divided by the sample size:

2

N
Q

and so the standard deviation of the sample means (the standard error of the mean)
is

O'XZ

I

8.6 The harmonic mean
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Symbols:

implies

isequivalent to

mean of a set of values of x

error

Greenhouse-Geisser correction (see p. 25)
Huynh—Feldt correction (see p. 25)

mean

population correlation

sample correlation

fy OF Iyy correlation betweenx andy

~ox ®tme g U

Myab.c multiple correlation betweeny and (a, b, c)
My.(x12) semipartial correlation between y and x, having partialled out z (see
p. 100)
ryxz Egrg;al correlation between y and x, having partialled out z (see p.

> sum of (seep. 209)

oy population standard deviation of X
sx sample standard deviation of X

o2 population variance of X

s2  sample variance of X
X

e Additive model. In within-subjects ANOVA, a structural model that assumes
the effects of within-subjects treatments are the same for al subjects.

e ANCOVA. Analysis of covariance: an ANOVA that uses a covariate as a pre-
dictor variable.

e ANOVA. Andysisof variance. See p. 8— for an explanation of how it works.

e Anpriori tests. Tests planned in advance of obtaining the data; compare post hoc
tests.

e Balanced ANOVA. An ANOVA is said to be balanced when all the cells have
equal n, when there are no missing cells, and if there is a nested design, when
the nesting is balanced so that equal numbers of levels of the nested factor ap-
pear in the levels of the factor(s) that they are nested within. This greatly simpli-
fies the computation.

e Between-subjects (factor or covariate). If each subject is only tested at a single
level of an independent variable, the independent variable is called a between-
subjects factor. Compare within-subjects.

e Carryover effects. See within-subjects.

e Categorical predictor variable. A variable measured on a nominal scale,
whose categories identify class or group membership, used to predict one or
more dependent variables. Often called afactor.

e Continuous predictor variable. A continuous variable used to predict one or
more dependent variables. Often called a covariate.

e Covariance matrix. If you have three variables x, y, z, the covariance matrix,

X y z
_ oF OV, COV,, . .
denoted 2., is Z= 2 where covyy is the covariance of
y |covy Oy covy,
z |cov,, cov,, o2

x and Yy (= pyoxoy Where p,, is the correlation between x and y and o is the vari-
ance of x). Obvioudly, cov,, = O'f . It is sometimes used to check for compound
symmetry of the covariance matrix, which is a fancy way of saying



2
y

COV,, =COV,, =COV,, (al numbers not on the leading diagona the same as

02=02=0? (al numbers on the leading diagonal the same as each other). and

each other). If there is compound symmetry, there is also sphericity, which is
what’s important when you're running ANOV As with within-subjects factors.
On the other hand, you can have sphericity without having compound symme-
try; see p. 25—.

Conservative. Apt to give p values that are too large.

Contrast. Seelinear contrast.

Covariate. A continuous variable (one that can take any value) used as a pre-
dictor variable.

Degrees of freedom (df). Estimates of parameters can be based upon different
amounts of information. The number of independent pieces of information that
go into the estimate of a parameter is called the degrees of freedom (d.f. or df).
Or, the number of observations free to vary. For example, if you pick three
numbers at random, you have 3 df — but once you calculate the sample mean,
X, you only have two df left, because you can only alter two numbers freely;
the third is constrained by the fact that you have ‘fixed” X. Or, the number of
measurements exceeding the amount absolutely necessary to measure the ‘ob-
ject’ (or parameter) in question. To measure the length of a rod requires 1
measurement. If 10 measurements are taken, then the set of 10 measurements
has 9 df. In generd, the df of an estimate is the number of independent scores
that go into the estimate minus the number of parameters estimated from those
scores as intermediate steps. For example, if the population variance ¢ is esti-
mated (by the sample variance §%) from a random sample of n independent
scores, then the number of degrees of freedom is equal to the number of inde-
pendent scores (n) minus the number of parameters estimated as intermediate
steps (one, asu is estimated by X) and istherefore n — 1.

Dependent variable. The variable you measure, but do not control. ANOVA is
about predicting the value of a single dependent variable using one or more
predictor variables.

Design matrix. The matrix in a general linear model that specifies the experi-
mental design — how different factors and covariates contribute to particular
values of the dependent variable(s).

Doubly-nested design. One in which there are two levels of nesting (see nested
design). Some are described on p. 159—.

Error term. To test the effect of a predictor variable of interest with an
ANOVA, the variability attributable to it (MSaiae) 1S cOmpared to variability
attributed to an appropriate ‘error term’ (M Sq,or), Which measures an appropri-
ate error variability. The error term is valid if the expected mean square for the
variable, E(MSaiane), differs from E(M Syor) ONly in away attributable solely to
the variable of interest.

Error variability (or error variance, 0'62 ). Variability among observations that

cannot be attributed to the effects of the independent variable(s). May include
measurement error but also the effects of lots of irrelevant variables that are not
measured or considered. It may be possible to reduce the error variability by ac-
counting for some of them, and designing our experiment accordingly. For ex-
ample, if we want to study the effects of two methods of teaching reading on
children’s reading performance, rather than randomly assigning all our students
to teaching method 1 or teaching method 2, we could split our children into
groups with low/medium/high intelligence, and randomly allocate students
from each level of intelligence to one of our two teaching methods. If intelli-
gence accounts for some of the variability in reading ability, accounting for it in
this way will reduce our error variability. Within-subjects designs take this prin-
ciple further (but are susceptible to carryover effects).

Expected mean square (EMS). The value a mean square (MS) would be ex-
pected to have if the null hypothesis were true.

F ratio. The ratio of two variances. In ANOVA, the ratio of the mean square
(MS) for apredictor variable to the MS of the corresponding error term.
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Factor. A discrete variable (one that can take only certain values) used as a
predictor variable. A categorical predictor. Factors have a certain number of
levels.

Factorial ANOVA. An ANOVA using factors as predictor variables. The term
is often used to refer to ANOV As involving more than one factor (compare one-
way ANOVA). Factorial designs range from the completely randomized design
(subjects are randomly assigned to, and serve in only one of severa different
treatment conditions, i.e. completely between-subjects design), via mixed de-
signs (both between-subjects and within-subjects factors) to completely within-
subjects designs, in which each subject servesin every condition.

Fixed factor. A factor that contains al the levels we are interested in (e.g. the
factor ‘sex’ has the levels male and female). Compare random factor and see p.
31.

Gaussian distribution. Normal distribution.

General linear model. A general way of predicting one or more dependent
variables from one or more predictor variables, be they categorical or continu-
ous. Subsumes regression, multiple regression, ANOVA, ANCOVA, MA-
NOVA, MANCOVA, and so on.

Greenhouse-Geisser correction/epsilon. If the sphericity assumption is vio-
lated in an ANOV A involving within-subjects factors, you can correct the df for
any term involving the WS factor (and the df of the corresponding error term)
by multiplying both by this correction factor. Often written £, where 0 < £ <
1. Originally from Greenhouse & Geisser (1959).

Heterogeneity of variance. Opposite of homogeneity of variance. When vari-
ances for different treatments are not the same.

Hierarchical design. One in which one variable is nested within a second,
which is itself nested within a third. A doubly-nested design (such as the split-
split plot design) isthe simplest form of hierarchical designs. They’re complex.
Homogeneity of variance. When a set of variances are all equal. If you per-
form an ANOVA with a factor with a levels, the homogeneity of variance as-
sumptionisthat 67 =03 =...= 02 =02, where ¢ istheerror variance.
Huynh—Feldt correction/epsilon. If the sphericity assumption is violated in an
ANOVA involving within-subjects factors, you can correct the df for any term
involving the WS factor (and the df of the corresponding error term) by multi-
plying both by this correction factor. Often written £, where 0 < £ < 1. Origi-
nally from Huynh & Feldt (1970).

Independent variable. The variables thought to be influencing the dependent
variable(s). In experiments, independent variables are manipulated. In correla-
tional studies, independent variables are observed. (The advantage of the ex-
periment is the ease of making causal inferences.)

Interaction. There is an interaction between factors A and B if the effect of
factor A depends on the level of factor B, or vice versa. For example, if your
dependent variable is engine speed, and your factors are ‘presence of spark
plugs (Y/N)' (A) and ‘presence of petrol (Y/N)' (B), you will find an interac-
tion such that factor A only influences engine speed at the ‘petrol present’ level
of B; similarly, factor B only influences engine speed at the ‘spark plugs pres-
ent’ level of B. Thisis a binary example, but interactions need not be. Compare
main effect, simple effect.

Intercept. The contribution of the grand mean to the observations. See p. 65.
The F test on the intercept term (M Sipercent/ M Serror) tests the null hypothesis that
the grand mean is zero.

Level (of afactor). One of the values that a discrete predictor variable (factor)
can take. For example, the factor Weekday might have five levels — Monday,
Tuesday, Wednesday, Thursday, Friday. We might write the factor as Weekdays
in descriptions of ANOV A models (asin ‘ Tedium = Drowsiness, x Weekdays x
S'), or write the level s themsel ves as Weekday; ...Weekdays.

Levene's test (for heterogeneity of variance). Originaly from Levene (1960).
Tests the assumption of homogeneity of variance. If Levene's test produces a
‘significant’ result, the assumption of homogeneity of variance cannot be made
(this is generaly a Bad Thing and suggests that you might need to transform
your data to improve the situation; see p. 34).
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Liberal. Apt to give p values that are too small.

Linear contrasts. Comparisons between linear combinations of different
groups, used to test specific hypotheses. See p. 75—.

Linear regression. Predicting Y from X using the equation of a straight line:

Y =bX +a. May be performed with regression ANOVA.

Logistic regression. See Howell (1997, pp. 548-558). A logistic function is a
sigmoid (see www.mathworld.com). If your dependent variable is dichotomous
(categoria) but ordered (‘flight on time’ versus ‘flight late’, for example) and
you wish to predict this (for example, by pilot experience), alogistic function is
often better than a straight line. It reflects the fact that the dichotomy imposes a
cutoff on some underlying continuous variable (e.g. once your flight delay in
seconds — continuous variable — reaches a certain level, you classify the flight
as late — dichotomous variable). Dichotomous variables can be converted into
variables suitable for linear regression by converting the probability of falling
into one category, P(flight late), into the odds of falling into that category, using
P(A)

1

loge(0dds) = In(odds). The probability is therefore a logistic function of the log
In(odds)

odds=

, and then into the log odds, using the natural (base €) logarithm

odds: probability = T so performing a linear regression on the log

+ eIn(odds) !
odds is equivaent to performing a logistic regression on probability. This is
pretty much what logistic regression does, give or take some procedural wrin-
kles. Odds ratios (likelihood ratios), the odds for one group divided by the odds
for another group, emerge from logistic regression in the way that slope esti-
mates emerge from linear regression, but the statistical tests involved are differ-
ent. Logistic regression is a computationally iterative task; there's no simple
formula (the computer works out the model that best fits the dataiteratively).
Main effect. A main effect is an effect of a factor regardless of the other fac-
tor(s). Compare simple effect; interaction.

MANCOVA. Multivariate analysis of covariance; see MANOVA and ANCOVA.
MANOVA. Multivariate ANOVA — ANOVA that deals with multiple de-
pendent variables simultaneously. Not covered in this document. For example,
if you think that your treatment has a bigger effect on dependent variable Y,
than on variable Y;, how can you see if that is the case? Certainly not by making
categorical decisions based on p values (significant effect on Yy, not significant
effect on Y, — this wouldn't mean that the effect on Y; and Y, were signifi-
cantly different!). Instead, you should enter Y; and Y, into aMANOVA.
Mauchly’s test (for sphericity of the covariance matrix). Originally from
Mauchly (1940). See sphericity, covariance matrix, and p. 25.

Mean square (M S). A sum of squares (SS) divided by the corresponding hum-
ber of degrees of freedom (df), or number of independent observations upon
which your SS was based. This gives you the mean ‘squared deviation from the
mean’, or the ‘mean sguare’. Effectively, avariance.

Mixed model. An ANOVA model that includes both between-subjects and
within-subjects predictor variables. Alternatively, one that includes both fixed
and random factors. The two uses are often equivalent in practice, since Sub-
jectsis usualy arandom factor.

Multiple regression. Predicting a dependent variable on the basis of two or
more continuous variables. Equivalent to ANOV A with two or more covariates.
Nested design. An ANOVA design in which variability due to one factor is
‘nested’ within variability due to another factor. For example, if one were to
administer four different tests to four school classes (i.e. a between-groups fac-
tor with four levels), and two of those four classes are in school A, whereas the
other two classes are in school B, then the levels of the first factor (four differ-
ent tests) would be nested in the second factor (two different schools). A very
common example is a design with one between-subjects factor and one within-
subjects factor, written A x (U x S); variation due to subjects is nested within
variation due to A (or, for short-hand, Sis nested within A), because each sub-
ject is only tested at one level of the between-subjects factor(s). We might write
this S/A (‘S is nested within A’); SPSS uses the alternative notation of S(A).
See also doubly-nested design.
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Nonadditive model. In within-subjects ANOV A, a structural model that allows
that the effects of within-subjects treatments can differ across subjects.

Null hypothesis. For a general discussion of null hypotheses, see handouts at
www.pobox.com/~rudolf/psychology. In a one-way ANOVA, when you test
the main effect of afactor A with a levels, your null hypothesisis that i = u, =
... = ua. If you reject this null hypothesis (if your F ratio is large and signifi-
cant), you conclude that the effects of all a levels of A were not the same. But if
there are >2 levels of A, you do not yet know which levels differed from each
other; see post hoc tests.

One-way ANOVA. ANOVA with a single between-subjects factor.

Order effects. See within-subjects.

Over parameterized model. A way of specifying a general linear model design
matrix in which a separate predictor variable is created for each group identified
by a factor. For example, to code Sex, one variable would be created in which
males score 1 and females score 0, and another variable would be created in
which males score 0 and females score 1. These two variables contain mutually
redundant information: there are more predictor variables than are necessary to
determine the relationship of a set of predictors to a set of dependent variables.
Compare sigma-restricted model.

Planned contrasts. Linear contrastsrun asa priori tests.

Polynomial ANCOVA. An ANCOVA in which a nonlinear term is used as a
predictor variable (such as X3, X°..., rather than the usual x). See Myers & Well
(1995, p. 460).

Post hoc tests. Statistical tests you run after an ANOV A to examine the nature
of any main effects or interactions you found. For example, if you had an
ANOVA with a sgingle between-subjects factor with three levels,
sham/core/shell, and you found a main effect of this factor, was this due to a
difference between sham and core subjects? Sham and shell? Shell and core?
Are all of them different? There are many post hoc tests available for this sort of
purpose. However, there are statistical pitfalls if you run many post-hoc tests;
you may make Type I errors (see handouts at
www.pobox.com/~rudolf/psychology) simply because you are running lots of
tests. Post hoc tests may include further ANOV As of subsets of your original
data — for example, after finding a significant Group x Difficulty interaction,
you might ask whether there was a simple effect of Group at the ‘easy’ level of
the Difficulty factor, and whether there was a simple effect of Group at the “dif-
ficult’ level of the Difficulty factor (see pp. 20, 39—).

Power of an ANOVA. Complex to work out. But things that increase the ex-
pected F ratio for aparticular term if the null hypothesisis false increase power,

MS,, i SS, adictor X df
and F = —predetor _ “aredictor e gigger samples contribute to a larger

M Serror SSerror X dfpredictor
df for your error term; this therefore decreases MSqr and increases the ex-
pected F if the null hypothesisis false, and this therefore increases your power.
The larger the ratio of E(M Syeqment) 10 E(M Sqror), the larger your power. Some-
times two different structural models give you different EMS ratios; you can use
this principle to find out which is more powerful for detecting the effects of a
particular effect (see p. 73—). For references to methods of calculating power
directly, see p. 102.
Predictor variable. Factors and covariates: things that you use to predict your
dependent variable.
Pseudor eplication. What you do when you analyse correlated data without ac-
counting for the correlation. A Bad Thing — entirely Wrong. For example, you
could take 3 subjects, measure each 10 times, and pretend that you had 30 inde-
pendent measurements. No, no, no, no, no. Account for the correlation in your
analysis (in this case, by introducing a Subject factor and using an appropriate
ANOVA design with a within-subjects factor).
Random factor. A factor whose levels we have sampled at random from many
possible alternatives. For example, Subjects is a random factor — we pick our
subjects out of a large potential pool, and if we repeat the experiment, we may
use different subjects. Compare fixed factor and see p. 31.
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Regression ANOVA. Performing linear regression using ANOVA. A simple
linear regression is an ANOVA with a single covariate (i.e. ANCOVA) and no
other factors.

Repeated measures. Same as within-subjects. ‘ Repeated measures' is the more
general term — within-subjects designs involve repeated measurements of the
same subject, but things other than subjects can also be measured repeatedly. In
general, within-subjects/repeated-measures analysis is to do with accounting
for relatedness between sets of observations above that you'd expect by chance.
Repeated measurement of a subject will tend to generate data that are more
closely related (by virtue of coming from the same subject) than data from dif-
ferent subjects.

Robust. A test that gives correct p values even when its assumptions are vio-
lated to some degree (‘this test is fairly robust to violation of the normality as-
sumption...”).

Sequence effects. See within-subjects.

Sigma-restricted model. A way of specifying a general linear model in which
a categorical variable with k possible levelsis coded in a design matrix with k —
1 variables. The values used to code membership of particular groups sum to
zero. For example, to code Sex, one variable would be created in which males
score +1 and females —1. Compare over parameterized model.

Simple effect. An effect of one factor considered at only one level of another
factor. A simple effect of A at level 2 of factor B iswritten ‘A a B, or ‘A/B,’.
See main effect, interaction, and pp. 20, 39—.

Source of variance (SV). Something contributing to variation in a dependent
variable. Includes predictor variables and error variability.

Sphericity assumption. An important assumption applicable to within-subjects
(repeated measures) ANOVA. Sphericity is the assumption of homogeneity of
variance of difference scores. Suppose we test 5 subjects at three levels of A.
We can therefore calculate three sets of difference scores (Az— Ay), (A, — Ay,
and (Az — A,), for each subject. Sphericity is the assumption that the variances
of these difference scores are the same. See p. 25—.

Standard deviation. The square root of the variance.

Structural model. An equation giving the value of the dependent variable in
terms of sources of variability including predictor variables and error variabil-
ity.

Sum of squares (SS). In full, the sum of the squared deviations from the mean.
See variance. Sums of squares are used in preference to actual variances in
ANOVA, because sample sums of sguares are additive (you can add them up
and they still mean something) whereas sample variances are not additive unless
they’re based on the same number of degrees of freedom.

t test, one-sample. Equivalent to testing M Sinercept/ M Serror With an ANOVA

with no other factors (odd as that sounds). F; =tZ and t, = Fix - Seeinter-

cept.
t test, two-sample, paired. Equivalent to ANOVA with one within-subjects

factor with two levels, Fy, =t and t, = /Fy .
t test, two-sample, unpaired. Equivalent to ANOVA with one between-
subjects factor with two levels. Fyy =tZ and t, =/Fy .

Variance. To calculate the variance of a set of observations, take each observa-
tion and subtract it from the mean. This gives you a set of deviations from the
mean. Square them and add them up. At this stage you have the sum of the
squared deviations from the mean, aso known as the sum of squares (SS). Di-
vide by the number of independent observations you have (n for the population
variance; n—1 for the sample variance; or, in general, the number of degrees of
freedom) to get the variance. See the Background Knowledge handouts at
www.pobox.com/~rudolf/psychol ogy.

Within-subjects (factor or covariate). See also repeated measures. If a score is
obtained for every subject at each level of an independent variable, the inde-
pendent variable is called a within-subjects factor. See also between-subjects.
The advantage of a within-subjects design is that the different treatment condi-
tions are automatically matched on many irrelevant variables — all those that
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are relatively unchanging characteristics of the subject (e.g. intelligence, age).
However, the design requires that each subject is tested several times, under dif-
ferent treatment conditions. Care must be taken to avoid order, sequence or car-
ryover effects — such as the subject getting better through practice, worse
through fatigue, drug hangovers, and so on. If the effect of a treatment is per-
manent, it is not possible to use a within-subjects design. Y ou could not, for ex-
ample, use a within-subjects design to study the effects of parachutes (versus no
parachute) on mortality rates after falling out of a plane.
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10 Further reading

e A very good statistics textbook for psychology is Howell (1997).

e Abelson (1995) examines statistics as an technique of argument and is very
clear on thelogical principles and some of the philosophy of statistics.

o Keppel (1991) is a fairly hefty tome on ANOVA techniques. Winer (1991) is
another monster reference book. Neither are for the faint-hearted.

o Myers & Well (1995) is another excellent one. Less fluffy than Howell (1997)
but deals with the issues head on.

Thereis also an excellent series of Statistics Notes published by the British Medical
Journal, mostly by Bland and Altman. A list is available at

www.mbland.sghms.ac.uk/ pbstnote.htm
and the articles themselves are available online from
www.bmj.com
This seriesincludes the following:

e The problem of the ‘unit of analysis' (Altman & Bland, 1997). Correlation and
regression when repeated measurements are taken, and the problem of pseu-
doreplication (Bland & Altman, 19944a). The approach one should take to meas-
ure correlation within subjects (Bland & Altman, 1995a) and correlation be-
tween subjects (Bland & Altman, 1995b).

e Why correlation is utterly inappropriate for assessing whether two ways of
measuring something agree (Bland & Altman, 1986).

e Generalization and extrapolation (Altman & Bland, 1998).

e Why to randomize (Altman & Bland, 1999b), how to randomize (Altman &
Bland, 1999a), and how to match subjects to different experimental groups
(Bland & Altman, 1994b).

e Blinding (Day & Altman, 2000; Altman & Schulz, 2001).

Absence of evidence is not evidence of absence — about power (Altman &

Bland, 1995).

Multiple significance tests: the problem (Bland & Altman, 1995c).

Regression to the mean (Bland & Altman, 1994e; Bland & Altman, 1994d).

One-tailed and two-tailed significance tests (Bland & Altman, 1994c).

Transforming data (Bland & Altman, 1996b) and how to calculate confidence

intervals with transformed data (Bland & Altman, 1996c; Bland & Altman,

19964).

o ANOVA, briefly (Altman & Bland, 1996), and the analysis of interaction ef-
fects (Altman & Matthews, 1996; Matthews & Altman, 1996a; Matthews &
Altman, 1996b).

e Comparing estimates derived from separate analyses (Altman & Bland, 2003).

e Dealing with differences in baseline by ANCOVA (Vickers & Altman, 2001).

Finally, there’ s an excellent on-line textbook (StatSoft, 2002):

www.statsoft.nl /textbook/ stathome.html
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