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ABSTRACT: Impulsive choice, one aspect of impulsivity, is characterized by an
abnormally high preference for small, immediate rewards over larger delayed
rewards, and can be a feature of adolescence, but also attention-deficit/hyper-
activity disorder (ADHD), addiction, and other neuropsychiatric disorders.
Both the serotonin and dopamine neuromodulator systems are implicated in
impulsivity; manipulations of these systems affect animal models of impulsive
choice, though these effects may depend on the receptor subtype and whether
or not the reward is signaled. These systems project to limbic cortical and stri-
atal structures shown to be abnormal in animal models of ADHD. Damage to
the nucleus accumbens core (AcbC) causes rats to exhibit impulsive choice.
These rats are also hyperactive, but are unimpaired in tests of visuospatial at-
tention; they may therefore represent an animal model of the hyperactive—im-
pulsive subtype of ADHD. Lesions to the anterior cingulate or medial
prefrontal cortex, two afferents to the AcbC, do not induce impulsive choice,
but lesions of the basolateral amygdala do, while lesions to the orbitofrontal
cortex have had opposite effects in different tasks measuring impulsive choice.
In theory, impulsive choice may emerge as a result of abnormal processing of
the magnitude of rewards, or as a result of a deficit in the effects of delayed re-
inforcement. Recent evidence suggests that AcbC-lesioned rats perceive re-
ward magnitude normally, but exhibit a selective deficit in learning
instrumental responses using delayed reinforcement, suggesting that the AcbC
is a reinforcement learning system that mediates the effects of delayed rewards.
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INTRODUCTION

Adolescence is a time when people are prone to taking risks and seeking novel
experiences. For the majority, this period is navigated safely and much useful expe-
rience is gained, but adolescence is a period of disproportionately high morbidity
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and mortality due to maladaptive behavior'32 (see Refs. 133 and 134). In particular,
adolescents may make choices that are rewarding in the very short term, but poor in
the longer term. This can be termed impulsive choice. Impulsive choice is one con-
sequence of a failure to learn from or choose appropriately on the basis of delayed
reinforcement. This chapter discusses the neurobiological systems that play a part in
determining the effects of delayed reinforcement, and that may therefore contribute
to impulsivity in adolescence or other pathological states in which impulsive choice
features prominently.

Animals act to obtain rewards such as food, shelter, and sex. Sometimes, their ac-
tions are rewarded or reinforced immediately, but often this is not the case; to be suc-
cessful, animals must learn to act on the basis of delayed reinforcement. They may
also profit by choosing delayed reinforcers over immediate reinforcers, if the de-
layed reinforcers are sufficiently large. However, individuals differ in their ability to
choose delayed rewards. Self-controlled individuals are strongly influenced by de-
layed reinforcement and choose large, delayed rewards in preference to small, im-
mediate rewards; in contrast, individuals who are relatively insensitive to delayed
reinforcement choose impulsively, preferring the immediate, smaller reward in this
situation.! Impulsivity has long been recognized as a normal human characteristic?
and in some circumstances it may be beneficial,? but impulsive choice contributes
to deleterious states such as drug addiction*™® and attention-deficit/hyperactivity
disorder (ADHD).%10

Why are some individuals impulsive in their choices? To address these questions,
the potential ways in which delayed reinforcement can affect action—outcome learn-
ing will be considered. Theories of instrumental choice involving delayed reinforce-
ment will then be briefly considered. Interventional studies will be reviewed that
examine the role of selected neurochemical systems—the serotonin and dopamine
neuromodulator systems—and neuroanatomical regions—the nucleus accumbens
core (AcbC), anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), or-
bitofrontal cortex (OFC), and basolateral amygdala (BLA)—in rats’ ability to
choose delayed rewards. Finally, the applications of these studies to ADHD and oth-
er disorders of impulsivity will be considered.

LEARNING TO RESPOND FOR DELAYED REINFORCEMENT

Instrumental, or operant, conditioning is a procedure in which the experimenter
arranges a contingency between an animal’s behavior (the operant) and a reinforcing
outcome.!! It creates multiple psychological representations, and therefore delayed
reinforcement can affect learning in several ways. Early theorists considered the fun-
damental problem of delayed reinforcement: how a response can be strengthened by
reinforcement that follows it. Hull postulated that the strength of a stimulus—
response (S—R) association is inversely related to the delay between the response and
the reinforcement.!2 Indeed, instrumental learning has repeatedly been shown to get
worse as the response—reinforcer delay is increased.!3™1% An alternative view is that
reinforcement never acts “backwards in time” to strengthen past responses; instead,
reinforcement always strengthens the response that the animal is presently making.
In this scenario, the effects of the delay arise because the longer the time between
the response and reinforcement, the more likely it is that the animal has left the be-
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havioral state it was in when it responded, so that some other state will be errone-
ously reinforced.!®™20 Moreover, since Hull’s suggestion, it has been shown that
when rats respond for reward, they may respond not only via a direct S—R (“habit”)
association—by which responses are automatically elicited by environmental stim-
uli as a consequence of the subject’s past history of reinforcement—but also via a
declarative, goal-directed system, through which the subject is aware of its goals and
the actions that will lead to them.?! 24 Finally, learning can be improved if a distinc-
tive environmental cue “bridges” the delay.!> Such a cue, which reliably precedes
delivery of the final reinforcer, can become associated with reinforcement, thereby
becoming a conditioned reinforcer with the potential to affect choice on its own.
Therefore, there are several systems that might be affected by delays to reinforce-
ment. Subjects may fail to choose a worthwhile reinforcer when it is delayed because
a stimulus—response, response—reinforcer, or stimulus—reinforcer association is
weaker for the delayed alternative.

CHOOSING BETWEEN REINFORCERS: EFFECTS OF DELAY

Despite this potential complexity, studies of impulsive choice have produced
some highly consistent results regarding the effects of delayed reinforcement in

A. Temporal discounting B. Preference reversal
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FIGURE 1. (A) Humans and other animals value delayed reinforcers less than imme-
diate reinforcers; this is termed temporal discounting. The figure illustrates hyperbolic tem-
poral discounting, governed by the equation value = magnitude/(1 + K X delay). Large values
of K give the steepest curve (the most “impulsive” subjects). (B) Preference reversal. Given
a choice between an early reward of value 0.6 and a later reward of value 1, hyperbolic dis-
counting predicts that the larger reward will be chosen if the choice is made far in advance
(toward the left of the graph). However, as time advances, there comes a time just before
delivery of the small reward when preference reverses and the small reward is chosen. Figure
adapted from Ainslie.!
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well-defined choice paradigms. In a typical experimental situation, a subject choos-
es between an immediate, small reward or a large, delayed reward; the temporal dis-
counting function quantifies the effect of the delay on preference. Early models of
choice assumed an exponential model of temporal discounting, so that if ¥, is the
value of a reinforcer delivered immediately, then the value of a reinforcer delivered
after time ¢ is ¥, = Ve ¥, where k quantifies an individual’s tendency to “discount”
the future (to value delayed rewards less). The exponential model makes intuitive
sense, whether you consider the underlying process to be one in which the subject
has a constant probability of “forgetting” its original response per unit time, one in
which the “strength” of the response’s representation decays to a certain proportion
of'its previous value at each time step, or one in which the subject behaves as if there
is a constant probability of losing the delayed reward per unit of waiting time. Un-
fortunately, it is wrong; the exponential model has been emphatically rejected by ex-
perimental work with humans and other animals. Instead, temporal discounting
appears to follow a hyperbolic or very similar discount function (FiG. 1A).13-23728
One interesting prediction that emerges from hyperbolic (but not exponential) mod-
els is that preference between a large and a small reward should be observed to re-
verse depending on the time that the choice is made (F1G. 1B), and such preference
reversal is a reliable experimental finding.2°

It is not known why hyperbolic discounting arises,? or what neuropsychological
processes are responsible for it. Such discounting might, for example, result from
poor knowledge of the contingencies between actions and their outcomes at long de-
lays, or from weak S—R habits, or because subjects are perfectly aware that the de-
layed reward is available but assign a low value to it.3! However, given the
importance of impulsive choice in addiction*™8 and ADHD,*-!0 a number of groups
have studied the effects on impulsive choice of manipulating neurochemical and
neuroanatomical systems implicated in these disorders.

3

NEUROCHEMICAL STUDIES OF IMPULSIVE CHOICE

Serotonin (5HT)

The suggestion that SHT is involved in impulse control followed from the twin
observations that drugs that suppress SHT function appear to reduce behavioral in-
hibition, making animals more impulsive in a “motor” sense,>2 and that low levels
of SHT metabolites in cerebrospinal fluid are associated with impulsive aggression
and violence in humans3373¢ and risk-taking behavior in monkeys.3”% Forebrain
5HT depletion leads to impulsive choice in a variety of paradigms>®~#2 and has been
suggested to steepen the temporal discounting function, such that delayed rewards
lose their capacity to motivate or reinforce behavior.3%4344 The 5SHT-depleted ani-
mal becomes hypersensitive to delays (or hyposensitive to delayed reward). As de-
layed rewards have unusually low value (utility), the animal consistently chooses
small, immediate rewards over large, delayed rewards, a characteristic of impulsiv-
ity.! Conversely, increasing SHT function with the SHT indirect agonist fenflu-
ramine decreases impulsive choice.*> However, these results are not wholly clear-
cut;*047 the effects of forebrain SHT depletion to promote impulsive choice have
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sometimes been transient™ or not observe and a nonselective SHT antagonist
has been observed to promote self-controlled choice.*” SHT may modulate impul-
sivity in different ways depending on the involvement of different receptor sub-
types.3*¢ In humans, lowering 5HT levels via dietary tryptophan depletion39~52
decreases levels of SHT metabolites in cerebrospinal fluid,>3-54 an indirect indicator
of brain SHT levels, but although tryptophan depletion may increase “motor” impul-
sivity,> it has not been shown to increase impulsive choice in humans.® There are,
of course, a number of substantial procedural differences between the tasks com-
monly used to assess impulsive choice in rats and humans (discussed below in the
context of psychostimulants) and it is not presently known by what psychological
mechanism SHT depletion affects impulsive choice in rats.

Dopamine (DA)

Much of the interest in the relationship between DA and impulsivity stems from
the discovery that amphetamine and similar psychostimulants are an effective ther-
apy for ADHD.? Though these drugs have many actions, they are powerful releas-
ers of DA from storage vesicles in the terminals of dopaminergic neurons, and
prevent DA re-uptake from the synaptic cleft, potentiating its action.’® Sagvolden
and Sergeant have proposed that many features of ADHD, including preference for
immediate reinforcement and hyperactivity on simple reinforcement schedules, are
due to abnormally steep temporal discounting, and that this is due to a hypofunction-
al nucleus accumbens (Acb) DA system®-10-%—though whether ADHD is charac-
terized by a hypodopaminergic or a hyperdopaminergic state, and how this might be
“normalized” by psychostimulants, is controversial. 093 Many of the inferences re-
garding the neural abnormalities in children with ADHD have been drawn from
studies of the spontaneously hypertensive rat (SHR), an inbred strain of rat that
serves as an animal model of ADHD.%*®7 This rat exhibits pervasive hyperactivity
and attention problems that resemble ADHD, exhibits a steeper “scallop” of re-
sponding on fixed-interval schedules of reinforcement (which can be interpreted as
abnormally high sensitivity to immediate reinforcement),®> is impulsive on mea-
sures of “execution impulsivity,”® and has a complex pattern of abnormalities in its
DA system.%773

Impulsive choice may reflect a lack of effectiveness of delayed reinforcement,
and has been suggested to underlie ADHD, or at least subtypes of ADHD.%-10:76.77
ADHD is amenable to treatment with psychomotor stimulant drugs,?”-’® suggesting
that they might promote the choice of delayed rewards. In fact, the effects of acute
administration of psychostimulants on laboratory models of impulsive choice have
varied. Some studies have found that they promote choice of delayed reinforc-
ers,5:79782 while others have found the opposite effect.*?-33:84 Indeed, the same psy-
chostimulant can have opposite effects in different tasks designed to measure
impulsivity. 82 These differences may reflect several factors. One is the presence of
cues or signals present during the delay. Providing a signal during a delay to rein-
forcement generally increases the rate of responding during the delay in free-operant
tasks,® and can promote choice of the delayed reinforcer.8¢ One reason for this may
be that the signal becomes associated with the reinforcer and acquires conditioned
reinforcing properties of its own; these can affect choice.8” We tested the effects of
amphetamine on a discrete-trial task in which rats were offered the choice of a small,
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immediate reinforcer or a large, delayed reinforcer (F1G. 2), and found that amphet-
amine promoted choice of the small, immediate reinforcer if the large, delayed rein-
forcer was not signaled, but promoted choice of the large, delayed reinforcer if it was
signaled.® This may be because amphetamine increases the effects of conditioned
reinforcers, 392 which in this situation would tend to promote choice of the delayed
reinforcer. This signal- or cue-dependent effect of amphetamine can explain some of
the past discrepancies in the literature.*%-79-80:82 However, conditioned reinforce-
ment is certainly not the only procedural difference between studies that have found
differing effects of psychostimulants. Perhaps the most obvious difference between
studies of human impulsive choice and animal models is that humans can be offered
explicit choices (hypothetical or real) without prior experience of the
situation81-93:94__<“prepackaged” action—outcome contingencies. Other animals
must learn these contingencies through experience, implying that the whole gamut
of psychological representations that contribute to their actions (including goal-
directed actions, S—R habits, and conditioned reinforcers) can influence their choic-
es, and potentially be influenced by psychostimulants.

It should also be emphasized that few studies of the effects of psychostimulants
on impulsive choice have addressed the pharmacological basis of their effects. How-
ever, Wade et al.3? have shown that mixed or D2-type DA receptor antagonists in-
duce impulsive choice, while D1-type receptor antagonists do not, suggesting that
D2 DA receptors normally promote choice of delayed reinforcement, while Win-
stanley et al. have recently found that amphetamine appears to affect choice through
5HT as well as DA neurotransmission.*3

NEUROANATOMICAL STUDIES OF IMPULSIVE CHOICE

In contrast to the literature on the neurochemistry of impulsivity, research into the
neuroanatomical basis of impulsive choice is a young field. We began our studies in
this area by considering the role of three candidate structures that may be involved
in regulating choice between alternative reinforcers, namely the AcbC and two of its
cortical afferents, the ACC and mPFC. These structures are firmly implicated in re-
inforcement processes: the Acb is a key site for the motivational impact of impend-
ing rewards23-25798 and many of its afferents are involved in reward-related learning,
including the ACC??7101 and mPFC.1927105 These regions are also important recip-
ients of dopaminergic and serotonergic afferents.!96:197 Additionally, abnormalities
of all three regions have been detected in humans with ADHD and in animal models
of ADHD. Abnormal functioning of prefrontal cortical regions, including the mPFC
and ACC, has been observed in ADHD patients.log_llo In the SHR, differences in
DA receptor density and gene expression have been observed within the core and
shell regions of the Acb,’>~75 111 while abnormalities of DA release have been de-
tected in the Acb® 7! and prefrontal cortex,’? in addition to possible dysfunction in
the dorsal striatum and amygdala.”%112

Nucleus Accumbens (Acb)

We used the task described earlier (F1G. 2) to examine the effects of excitotoxic
lesions of the nucleus accumbens core (AcbC) on rats’ ability to choose a delayed
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reward.!!3 No cues were present during the delay, to avoid any potential confounds
arising from conditioned reinforcement effects, and subjects were trained preopera-
tively, assigned to matched groups, operated upon, and retested postoperatively, to
avoid any possible effects of the lesion on learning of the task. AcbC-lesioned sub-
jects were rendered impulsive in their choices: they exhibited a profound deficit in
their ability to choose a delayed reward, and persisted in choosing impulsively even
though they were made to experience the larger, delayed alternative at regular inter-
vals. This effect was not due to an inflexible bias away from the lever producing the
delayed reinforcer: AcbC-lesioned rats still chose the large reinforcer more frequent-

Intertrial state.

!

Trial begins.
Rat must centre

itself between two .
failure to respond

[ rs. , .
evers - terminates trial
’
/
Lever(s
Delayed lever presented Immediate lever
chosen . chosen
Levers retracted. Levers retracted.
i Small reinforcer (1 pellet) delivered.

Delay (which varies from 010 60 s
across the session)

Large reinforcer (4 pellets) delivered.

FIGURE 2. Delayed-reinforcement choice task®%:113 based on the work of Evenden
and Ryan.*® Hungry rats regularly choose between two levers. Responding on one lever
leads to the immediate delivery of a small food reward (1 pellet); responding on the other
leads to a much larger food reward (4 pellets), but this reward is delayed for between 0 and
60 seconds. The figure shows the format of a single trial; trials begin at regular intervals
(every 100 s), so choice of the small reinforcer is always suboptimal. Sessions consist of 5
blocks. In each block, two single-lever trials are given (one trial for each lever), to ensure
the animals sample the options available at that time; these are followed by ten choice trials.
The delay to the large reinforcer is varied systematically across the session: delays for each
block are 0, 10, 20, 40, and 60 s, respectively. In the so-called “signaled” or “cue” condition,
a stimulus light is illuminated during the delay to the large reinforcer; this is absent in the
“unsignaled” or “no cue” condition.
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ly at zero delay than at other delays, and removal of the delays resulted in a rapid
and significant increase in the rats’ preference for the large reinforcer. Although a
few lesioned subjects avoided the large reinforcer alternative postoperatively even
when the delay was zero, this was probably due to within-session generalization
from trial blocks at which delays were present (see FI1G. 2). Prolonged training in the
absence of delays restored a near-absolute preference for the large reinforcer in the
majority of subjects—who were then much more impulsive than shams again when
delays were reintroduced.?! These results indicate that AcbC-lesioned rats are able
to discriminate the two reinforcers, but prefer immediate small rewards to larger de-
layed rewards.

This task involves choice between reinforcers that differed in both magnitude and
delay. Therefore, impulsive choice might arise as a result either of altered sensitivity
to reinforcer magnitude, or delay, or both.*3 Lesioned rats might have chosen the im-
mediate small reward because they did not perceive the large reward to be as large
(relative to the small reward) as sham-operated controls did, in which case the ab-
normally low magnitude of the large reward would be insufficient to offset the nor-
mal effects of the delay. Alternatively, they might have perceived the reward
magnitudes normally, but were hypersensitive to the delay. The latter explanation—
hypersensitivity to the effects of the delay—appears more likely. AcbC-lesioned rats
preferred the larger reward to the smaller,3!-!13 and rats with excitotoxic lesions of
the whole Acb 1 115 or of the AcbC (Cardinal and Cheung, unpublished data) ap-
pear just as sensitive to the magnitude of reward as normal rats. Acb lesions have
also produced delay-dependent impairments in a delayed-matching-to-position
task.116

If this interpretation is correct, and AcbC lesions induce hypersensitivity to de-
lays of reinforcement, then the effects of AcbC lesions might also extend to learning
with delayed reinforcement, as well as choice involving delayed reinforcers. In order
to learn which actions are the correct ones that eventually lead to reinforcement,
some mechanism must “bridge” the delay between action and outcome. We recently
examined the ability of AcbC-lesioned rats to learn a free-operant response task
(F1G. 3) in which every lever press produced a food pellet, but this reinforcement was
delayed by 0, 10, or 20 s in different groups. Increasing delays impaired learning in
normal rats to some degree, which is a well-known finding.!37! Rats with AcbC le-
sions were unimpaired (compared to sham-operated controls) when there was no de-
lay, but were profoundly impaired when there was a delay between action and
outcome, compared to shams learning with the same delay (Cardinal and Cheung,
unpublished data).

Taken together, these results suggest that the AcbC is a structure specialized for
the difficult task of learning with, and choosing, delayed reinforcement. Further un-
derstanding of the mechanism by which it does so, or sometimes fails to do so, would
provide insight into the pathology of a number of neuropsychiatric disorders. Given
the involvement of the Acb in aversive motivation,!!7-118 it will also be important to
determine whether lesions of Acb induce impulsive choice in an aversive context,
impairing the ability to choose a small immediate penalty in preference to a large de-
layed penalty.

Major glutamatergic afferents to the AcbC arrive from the ACC, mPFC, OFC,
and BLA; the contribution of these structures to choice between delayed reinforcers
will be considered next.
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Anterior Cingulate Cortex (ACC)

Excitotoxic lesions of the ACC had no effect in this delayed-reinforcement
choice task,'!3 showing that the ACC is not required for rats to choose a delayed re-
inforcer. This finding stands in apparent contrast to previous reports of motor impul-
sivity or disinhibited responding in ACC-lesioned rats. For example, such rats have
been found to overrespond to unrewarded stimuli,!9%-191 and to respond prematurely
in situations where they are required to wait.!!® However, motor (“execution”) im-
pulsivity and impulsive choice (“outcome impulsivity”) are known to be dissocia-
ble.? Thus, these results suggest that despite findings of ACC abnormalities in
disorders of impulsivity,!9%110 ACC dysfunction is not an important contributor to
impulsive choice.

In the delayed-reinforcement choice task (FIG. 2),!13 subjects choose between re-
inforcers that differ in magnitude and delay (small immediate versus large delayed)
but do not differ in probability (both are delivered with probability 1) or response
effort (both require a single lever press). However, Walton et al.120 found that large
mPFC lesions encompassing prelimbic cortex (PrL), infralimbic cortex (IL), and
ACC altered rats’ preference when the two alternatives differed in magnitude, re-
sponse effort, and delay (although delay was not controlled directly). Subjects were
offered the choice of running down a short alley to obtain two pellets, or climbing
over a 30-cm-high barrier to obtain four pellets. Large mPFC lesions substantially

(A) perfect action—outcome contingency, zero delay

action
(lever presses)
outcome 1 | 1 I | ’ t
(food pellets) time

(B) perfect action—outcome contingency, delay > 0

action

outcome l | 1 | | |

FIGURE 3. Free-operant learning with delayed reinforcement. When an animal is free
to perform an action (operant) to obtain a rewarding outcome, it readily learns to do so if the
action—outcome contingency (the increase in the likelihood of obtaining the outcome that is
produced by performing the action) is good and if there is no delay between action and out-
come (A). Even with a perfect action—outcome contingency, learning is impaired by impos-
ing delays between the action and the outcome (B), yet animals do succeed in this task.
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increased rats’ preference for the small-reward, low-effort alternative. Nevertheless,
lesioned subjects were capable of surmounting the obstacle if there was no low-ef-
fort alternative, and their decisions were flexible in that they responded to alterations
in either the cost (effort) or the benefit of the alternatives. This effect has since been
localized to the ACC: selective ACC lesions impaired performance but PrL/IL le-
sions had no effect on this task.!2! One interpretation of these results is that the ACC
is involved in the assessment of response effort but not the delay to reinforcement.

Medial Prefrontal Cortex (mPFC)

Lesions of the mPFC (primarily PrL and IL) “flattened” the within-session shift
from the large to the small reward exhibited by rats performing the delayed-
reinforcement choice task shown in FIGURE 2.!13 That is, their preference for the
large reward was below that of shams at zero delay, but above that of shams at the
maximum delay—a regression toward indifference—although they responded ap-
propriately when the delays were removed, preferring the larger reinforcer. There is
no obvious explanation for this effect within theories of choice of delayed reinforce-
ment, implying that the mPFC lesion resulted in some form of insensitivity to the
contingencies or stimuli present in the task. One possibility is that mPFC lesions dis-
rupted the control over behavior by the passage of time in each session. There is
strong evidence that normal rats learn a session-wide temporal discrimination in this
task, and that this temporal discriminative stimulus comes to control responding—
in particular, the tendency to shift from the large to the small reward as the session
progresses.3® Disruption of such temporal stimulus control might be expected to
produce a “flattening” of the within-session shift of the kind seen in mPFC-lesioned
rats. Indeed, aspirative lesions of the mPFC have previously been shown to induce
a deficit in timing ability in rats;'?? lesioned subjects showed impaired temporal dis-
crimination in the peak procedure, an operant task that assesses the ability to time a
discriminative stimulus.!23-124 Consistent with the view that mPFC lesions did not
affect the basic process of choosing between reinforcers of different value in this
task, combined PrL/IL lesions did not affect choice between small/low-effort and
large/high-effort alternatives in the task of Walton ez al. 12!

Orbitofrontal Cortex (OFC)

The OFC is a prefrontal cortical region that projects to the AcbC and is strongly
implicated in the assessment of reward value. Mobini et al.'?> recently found that
lesions encompassing the OFC induced impulsive choice in a task very similar to
that described previously. As before, results from this task do not indicate whether
the impulsive choice was as a result of altered sensitivity to reinforcer magnitude or
delay. Although these lesions damaged PrL in addition to the OFC,'23 the hypothesis
that OFC damage was responsible for the behavioral effect is strengthened by the
finding that mPFC lesions encompassing PrL do not induce impulsive choice.!3 In
contrast, Winstanley et al.'33 recently found that OFC lesions induced the opposite
effect—better self-control than shams—in exactly the paradigm described previous-
ly.113 This apparent discrepancy requires explanation. One possible reason is that
subjects in the Winstanley et al. study were trained before the OFC was destroyed
and retested postoperatively, while Mobini et al. trained and tested postoperatively.
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Another is that Mobini et al. offered rats a choice between a 1-pellet immediate re-
inforcer and a 2-pellet delayed reinforcer, whereas Winstanley et al. used a 1-pellet
immediate reinforcer and a 4-pellet delayed reinforcer. Differences in subjects’ sen-
sitivity to either the delay or the magnitude of reinforcement can play a role in de-
termining preference in this task3143:125 and it may be that OFC lesions affect
both!25—a hypothesis for which Kheramin et al.'2¢ have found direct support. This
emphasizes the necessity for quantitative analysis of delay and magnitude
sensitivity*? or the use of multiple, very different paradigms to provide independent
measurements of sensitivity to delay and magnitude.31

Basolateral Amygdala (BLA)

Finally, Winstanley ez al.!3> have recently found that excitotoxic lesions of the
BLA promote impulsive choice in the delayed-reinforcement choice task shown in
FIGURE 2. This suggests that a network including the BLA, OFC, and AcbC is in-
volved in regulating choice between reinforcers differing in magnitude and delay;
the BLA and OFC are extensively interconnected and both project to the AcbC.
However, the precise manner in which the three structures interact in a choice situ-
ation is far from clear; the observations that BLA and OFC lesions can have opposite
effects in exactly the same paradigm (Winstanley ez al.13%), and that OFC lesions can
have effects on multiple aspects of reinforcer assessment,!2 suggest that any such
interaction is likely to be complex.

CONCLUSIONS

The integrity of the Acb is critical for animals to tolerate delays to appetitive re-
inforcement.!!> This observation provides information on the neural systems
through which delayed reinforcement normally affects behavior, but the observation
that AcbC damage can induce impulsive choice also has implications for the under-
standing of ADHD and drug addiction, two clinical disorders in which impulsive
choice is a factor, and potentially for impulsivity in adolesecnce. In addition to being
impulsive, AcbC-lesioned rats are also hyperactive,!13:127 but they do not appear to
be inattentive.!28:129 Destruction of the AcbC does not, therefore, mimic all the
signs of ADHD, but these findings suggest that the behavior of rats with AcbC dam-
age resembles that of humans with the hyperactive—impulsive subtype of ADHD.!30
The adolescent nucleus accumbens differs both in dopamine function and synaptic
plasticity from that of the adult (see, e.g., Refs. 136—138), though whether any such
differences contribute to impulsive behavior in adolescence!3® is at present
unknown.

The same considerations apply to drug addiction, in which impulsive choice
plays a prominent role in maintaining the selection of drugs of abuse in favor of oth-
er, longer-term rewards.*”® Drugs of abuse (including opiates, ethanol, and psycho-
stimulants) can produce chronic neuroadaptations in brain regions including the
Acb,!31 and chronic methamphetamine has been shown to increase impulsive choice
in rats.”® One mechanism contributing to addiction may therefore be the ability of
drugs of abuse to induce damage or dysfunction in the AcbC, further promoting sub-
sequent impulsive choice and future drug taking.
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Impulsive choice may also be produced by damage to the BLA (Winstanley
et al. 135) or OFC,!25 two prominent afferents to the AcbC, though the exact contri-
bution of these structures may be complex!2%135 and the manner in which they in-
teract with each other and with the AcbC to determine an animal’s preference among
different reinforcers is not yet clear.

Interventional neuroanatomical studies of impulsive choice are clearly important
for the understanding of the pathogenesis of ADHD, for they allow a causal role to
be established between dysfunction of a brain region and impulsive choice. This may
make it possible to distinguish the brain regions that underlie different types of im-
pulsivity,? and to segregate the neural abnormalities that contribute to complex dis-
orders such as ADHD and drug addiction and to the normal variation in impulsive
behavior during adolescence. Although the ACC and mPFC have been shown to be
abnormal in disorders of impulsivity,!%8~110 damage to these regions does not pro-
duce impulsive choice in rats.!!3 The abnormalities of structure or function observed
in these regions in ADHD brains may therefore be responsible for other features of
the disorder (such as inattention or motoric disinhibition),!!? or these regions may
have altered as a consequence of a disease process beginning elsewhere. A clearer
understanding of the neurochemical and neuroanatomical basis of disorders of im-
pulsive choice may lead to more effective therapy.
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