
SameOpposite
A Whisker client

by Rudolf Cardinal

www.whiskercontrol.com

Copyright (C) Cambridge University Technical Services Ltd.

Distributed by Campden Instruments Ltd (www.campden-inst.com)

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: March 2024 in Cambridge, UK

SameOpposite

© Cambridge University Technical Services Ltd

Creator (Whisker)
Contacting the authors:

For information about Whisker, visit http://www.whiskercontrol.com/.

If you have sales enquiries about Whisker, contact Campden
Instruments Ltd at http://www.campden-inst.com/.

If you have comments or technical enquiries that cannot be
answered by the sales team, contact the authors:

Rudolf Cardinal (rudolf@pobox.com)
Mike Aitken (m.aitken@psychol.cam.ac.uk)

Design and Programming
(Whisker)

Legal Advisor (CUTS)

Sales (Campden)

Rudolf N. Cardinal

Rudolf N. Cardinal

Adjoa D. Tamakloe

Michael R. F. Aitken

Julie Gill

SameOppositeI

© Cambridge University Technical Services Ltd

Table of Contents

Foreword 1

Part I SameOpposite 2

... 21 About SameOpposite

... 32 Required devices

... 43 Using the task

... 54 Running multiple boxes

... 55 Task design and trial overview

... 76 Trial details

... 107 Parameters

... 138 Randomness, pseudorandomness, drawing without replacement

... 149 Results

... 14Text-based results file

... 16Creating a new ODBC source

... 26Using the Microsoft Access database for SameOpposite

... 29Relational databases in general

... 31Database structure

Index 32

Foreword

WARNING

Whisker is a system designed
for research purposes only,

and should never be used to
control medical apparatus or

other devices that could
endanger human life.

DISCLAIMER

The authors, copyright holders,
and distributors disclaim all

responsibility for any adverse
effects that may occur as a

result of a user disregarding
the above warning.

© Cambridge University Technical Services Ltd

I

2 SameOpposite

© Cambridge University Technical Services Ltd

1 SameOpposite

1.1 About SameOpposite

Purpose

Same/opposite side reaction time task.

Citing SameOpposite

Please cite as, for example:

(in text)
The task was implemented in the SameOpposite program (Cardinal, 2007) using the Whisker
control system (Cardinal & Aitken, 2001).

(in bibliography)
Cardinal RN (2007). SameOpposite (version 0.1), computer software [www.whiskercontrol.com].
Cambridge University Technical Services Ltd, Cambridge, UK.
Cardinal RN, Aitken MRF (2001). Whisker (version 2), computer software [www.whiskercontrol.
com]. Cambridge University Technical Services Ltd, Cambridge, UK.

Software requirements

Requires Whisker v2.0 or greater.

Data storage

· Text-based output to disk.
· ODBC data storage to a database (supplied).

Author

Rudolf Cardinal (rudolf@pobox.com).

Copyright

Copyright © Cambridge University Technical Services Ltd

Version history

· v0.1 (3-7 July 2007). First version written.
· v1.0 (5 Dec 2008). Bug fix: spurious error message ('Syntax error message received unknown

command "awaiting"') removed (a status message had a semicolon in; the actual problem was in
the clientlib). // Traylight goes off when rear panel entered, if it was on.

· v2.0 (12 Jan 2009). Server default changed from "loopback" to "localhost" (Windows Vista
compatibility and more general standardization).

· v2.1 (25 Mar 2009). Support for using different holes in a 9-hole box environment; change to
claimed device names (from HOLE_0-HOLE_4 to HOLE_0-HOLE_8, and similarly for
STIMLIGHT).

· v2.2 (1 May 2009). That was a silly choice of names, as the FiveChoice task uses HOLE_0 (etc.).
So we will now use NHB_HOLE_0 (to _8) and NHB_STIMLIGHT_0 (to _8). ("NHB" for "nine-hole
box".)

mailto:rudolf@pobox.com?subject=FiveChoice

3SameOpposite

© Cambridge University Technical Services Ltd

1.2 Required devices

The program requires to claim devices in groups named box0, box1, box2… with device names as
listed below in bold:

---------------- Box 0 definition
INPUTS
line 0 box0 REARPANEL

line 1 box0 NHB_HOLE_0

line 2 box0 NHB_HOLE_1

line 3 box0 NHB_HOLE_2

line 4 box0 NHB_HOLE_3

line 5 box0 NHB_HOLE_4

line 6 box0 NHB_HOLE_5

line 7 box0 NHB_HOLE_6

line 8 box0 NHB_HOLE_7

line 9 box0 NHB_HOLE_8

OUTPUTS
line 24 box0 HOUSELIGHT

line 25 box0 PELLET

line 26 box0 TRAYLIGHT

line 27 box0 TONE

line 28 box0 NHB_STIMLIGHT_0

line 29 box0 NHB_STIMLIGHT_1

line 30 box0 NHB_STIMLIGHT_2

line 31 box0 NHB_STIMLIGHT_3

line 32 box0 NHB_STIMLIGHT_4

line 32 box0 NHB_STIMLIGHT_5

line 32 box0 NHB_STIMLIGHT_6

line 32 box0 NHB_STIMLIGHT_7

line 32 box0 NHB_STIMLIGHT_8

... and so on for all your boxes

Please ensure that these devices are available and listed in the device definition file in use by the
server. (The snippet above shows an extract from a typical definition file.)
The TONE device is the one used as a tone or a white-noise distractor. (TONE/NOISE
DISTRACTION IS NOT CURRENTLY A FEATURE OF THIS TASK.)

4 SameOpposite

© Cambridge University Technical Services Ltd

1.3 Using the task

When you run the task, the main screen looks as follows:

"NPs" means nosepokes (responses at the front holes); "PPs" means panel pushes (responses at
the food alcove); see the Task Design.

You must connect to a Whisker server, claim an operant chamber (box), and set up the parameters
for your task. Once that's done, the traffic lights will turn amber. When you are ready, press Start to
begin the task.

When the task finishes, it saves data to disk and pops up a new dialogue box for you to select a
database to store the data to. (The data sources are configured under Control Panel ® ODBC.) If
you previously specified an ODBC data source in the parameters, that data source is used
automatically and you will only see a dialogue box if something goes wrong and the program needs
your input.

5SameOpposite

© Cambridge University Technical Services Ltd

1.4 Running multiple boxes

The SameOpposite program controls one box in which the subject performs the same/opposite
task.

To run the task with multiple boxes, you simply need to run multiple copies of the
SameOpposite program.

For example, suppose you have 6 five-choice chambers (boxes), and you have started the Whisker
server. You could run copy 1 of the SameOpposite program, and have it claim box 1, load subject
1's configuration, and start it. You could then run a second copy of the SameOpposite program at
the same time, claiming box 2, loading subject 2's configuration, and starting it... and so on. You
can also run other tasks (such as the FiveChoice task) at the same time.

1.5 Task design and trial overview

History

Carli M, Evenden JL, Robbins TW (1985). Depletion of unilateral striatal dopamine impairs
initiation of contralateral actions and not sensory attention. Nature 313: 679 682.

This task implements procedure (1) of Carli et al. (1985).

Apparatus

This task runs in a standard "nine-hole box" or "five-choice" operant chamber, shown below.
However, it only uses three central holes (the centre hole and a definable pair on either side) and
the food magazine.

6 SameOpposite

© Cambridge University Technical Services Ltd

Task outline

7SameOpposite

© Cambridge University Technical Services Ltd

See the trial details for a full description.

1.6 Trial details

Trial format

Think of the task as existing in a number of states, because that's how the program implements
it. Incidentally, this is an exercise in mental discipline: if you can't specify a state table like this,
having thought about what should happen in response to all possible events in any state, then you
can't program the task properly.

Blue text shows the states that a successful subject cycles through. Green shows ways that an

8 SameOpposite

© Cambridge University Technical Services Ltd

unsuccessful subject can rescue itself and lead onto the blue path. Red shows errors.

State name Description State of the
box

Conseque
nce of
nosepokin
g in the
centre
hole .

Consequence of
nosepoking at the
left or right hole .

Consequence of
nosepoking at
the rear (food)
panel

Consequence
of time
passing

NOTSTARTED Not started yet.

Awaiting

experimenter to

start task.

Darkness. - - - -

PLEASE_EAT Task begins
here. (For the

first trial, a free

pellet is given and

the trial number is

initially set to 0.)

Rat must respond

to rear panel to

initiate the trial.

This point may

also be reached by

successful

completion of a

trial.

Houselight

on.

Traylight on

(if used).

Score

perseverat
ive centre
response
and go to

TIMEOUT.

Score perseverative

side response and

go to TIMEOUT.

Go to

PLEASE_CENTR

E.

-

TIMEOUT_OV

ER_PLEASE_R

EINITIATE

Punishment

timeout over. Rat

must respond to

rear panel to

initiate new trial.

Houselight

on.

Traylight on

(if used).

Score

perseverat
ive centre
response
and go to

TIMEOUT.

Score perseverative

side response and

go to TIMEOUT.

Go to

PLEASE_CENTR

E.

-

PLEASE_CENT

RE

Trials begin
here. Trial
number
incremented.
Waiting for

subject to respond

in the centre hole.

Houselight

on.

Centre hole

lit .

Go to

CENTRED.

Score premature

side response and

go to TIMEOUT.

Recorded; no

consequence.

-

CENTRED Subject currently

responding in

centre hole. Brief

pause before target

is illuminated.

Houselight

on.

If rat

withdraws,

score

premature
centre
withdrawa
l and go to

TIMEOUT.

Shouldn't be possible,

unless equipment

failure or unusually

shaped rat. But

score premature

side response and

go to TIMEOUT.

Shouldn't be

possible, unless

equipment failure

or unusually shaped

rat. But score

perseverative
panel push and go

to TIMEOUT.

Go to

TARGET_ON.

TARGET_ON Side target

illuminated.

Subject may

respond.

Houselight

on.

Target hole

lit .

Score

perseverat
ive centre
response
and go to

TIMEOUT.

If correct, deliver

food and go to

PLEASE_EAT.

If incorrect, go to

TIMEOUT.

Score

perseverative
panel push and go

to TIMEOUT.

Go to

TARGET_OF

F.

TARGET_OFF Side target has

gone out, but

subject may still

respond.

Houselight

on.

Score

perseverat
ive centre
response
and go to

TIMEOUT.

If correct, deliver

food and go to

PLEASE_EAT.

If incorrect, go to

TIMEOUT.

Score

perseverative
panel push and go

to TIMEOUT.

O mission. Go

to TIMEOUT.

TIMEOUT Rat is being

punished.

Darkness. Score

perseverat
ive centre

Score perseverative

side response and

restart TIMEOUT.

Score

perseverative
panel push and

Go to

TIMEOUT_O

VER_PLEASE

9SameOpposite

© Cambridge University Technical Services Ltd

response
and restart

TIMEOUT.

restart TIMEOUT. _REINITIAT

E.

FINISHED Rat finished the

task

Darkness. - - - -

ABORTED User aborted the

task

Darkness. - - - -

The task records every response with its location and the state (phase) the box was in when the
response was made.

Additionally,
· there can be an overall time limit for the session;
· there can be a trial limit for the session.

10 SameOpposite

© Cambridge University Technical Services Ltd

1.7 Parameters

The parameters dialogue box looks like this:

· SUBJECT DETAILS. Here, you can enter your subject's ID and a comment or description, choose
the default box (operant chamber) number that this subject usually runs in, and set its session
number. You can also load and save the whole configuration (with the subject's details and all the
information you can see on this screen). We recommend that you set up one configuration file
per subject. If you do so, then you would set up the subject's task parameters once, then save
the configuration file. Every time you reload the configuration, on subsequent sessions, the
subject's parameters will be correctly recalled and the program will automatically increase the
session number by one. Unless you want to change the task parameters, this makes re-running a
subject a very rapid procedure.

· DATA RECORDING. The program stores its results in two places: a text file, and a relational
database. Here, you can specify the filename of the text file. Note also that a unique filename for
the text file is generated whenever you load a subject's configuration, so you shouldn't routinely
need to enter this. You can also specify the ODBC name of the database (see the Results section

11SameOpposite

© Cambridge University Technical Services Ltd

of this help for more information). Click "Pick" to choose from a list of ODBC databases configured
on your computer (see below). Your choice will be recorded and will apply to this subject from now
on, or until you specify a different database. If you don't specify a database now, or you delete the
value in the "ODBC data source name" box, you'll be asked to choose a database when the task
ends (and that choice will only apply to the session in progress).

· Target number of trials. Set the maximum number of correct/incorrect/omission trials. Since
these should be counterbalanced for stimulus duration, wait time, and target size, you specify a
multiplier; the program calculates the target number of trials as shown. The program will
terminate when this target has been reached. Trials that do not progress far enough to count as
correct, incorrect, or omission trials do not count towards this limit. Once the full set of trials is
created (as determined by the multiplier you set), the program draws individual trials without
replacement from that set (see drawing without replacement).

· Maximum number of trials of all types. You can set a further optional limit here of the
maximum number of trials of all types, including "premature" trials (see Task description and Trial
details). Enter 0 for no such limit.

· Session time limit. Set the maximum session time. The program will terminate when this time
limit is reached, after finishing any trial currently in progress.

· Session extra time. After the session time expires, the program will normally wait (in "extra
time") for the current trial to finish. You can specify how much "extra time" to allow for this here.
After the "extra time" expires, the program will terminate immediately, interrupting any trial that is
still in progress.

· TASK TYPE. Choose either "same" or "opposite" to define the task in use. See the Task
description.

· Choose also which holes to use for the task. This will be the very centre hole (hole 4, since the
holes are numbered 0-8), plus a symmetrical pair of holes to the side (ranging from the extreme
side holes and the centre, 0-4-8, to the three central holes, 3-4-5).

· TRIAL DETAILS. For full details of the task, see the Task description and Trial details.
· The task begins by requiring the subject to respond at the rear panel (the food alcove). Tick use

12 SameOpposite

© Cambridge University Technical Services Ltd

traylight if you wish the traylight (the light within the rear food alcove) to be illuminated when the
subject is required to respond there.

· The trial then requires the subject to nosepoke in the centre hole, and to wait with its head in this
hole for at least a specified WAIT TIME. You specify the possible wait times, in milliseconds
(ms). You can specify one wait time (e.g. 1000 ms) or a set of possible wait times (e.g. 500,
1000, 1500, and 2000 ms). To specify values for the wait time(s), click "Set possible values for
wait time":

Every time you click "Enter another value", your previous value is added to the list (shown near the
top) and you can enter another. Click "I've finished" when you've finished entering the possible
values you want. Note also that you can enter values twice, influencing their likelihood of
selection. For example, if you enter "1000, 2000, 2000", then you will get wait times of 1000 or
2000 ms, but you will be twice as likely to get a 2000 ms wait time than a 1000 ms wait time.

· After the initial pause, the STIMULUS is presented. You can specify the stimulus duration in
exactly the same way as the initial pause. A similar dialogue is shown for "Set possible values for
stimulus duration":

· You can specify the LIMITED HOLD period. This is the time the program will wait after the
stimulus begins before it abandons the trial, scoring it as an omission, if the subject has not
responded.

· Finally, task failure in a variety of ways (see Task design and Trial details) can lead to
punishments in the form of TIMEOUTS. Specify the timeout duration.

The last set of options concern miscellaneous aspects of the task.
· Reward parameters. Choose the number of pellets to be used as a reward, and the timing used

for your particular brand of pellet dispenser (e.g. if you would like 2 pellets per reward, delivered

13SameOpposite

© Cambridge University Technical Services Ltd

500 ms apart, and your pellet dispenser likes a 45-ms electrical pulse to dispense a single pellet,
then specify 2, 45, and 500 in the boxes here).

· Debouncing. Electromechanical devices often "bounce": if you press a lever, a short burst of
electrical pulses are sent, as physical vibration in the lever turns the device on and off very rapidly.
You normally want to ignore this. Typically, you might set a "debounce time" of 10 ms; this would
mean that any responses that are repeated within 10 ms of a previous response on the same
device (e.g. lever, panel detector) are attributed to electromechanical bounce and ignored.
Mammals generally cannot make a voluntary action twice within 10 ms! If you don't debounce
inputs, strange things can happen; for example, we saw a problem as a result of a mechanical
food alcove switch bouncing; this registered erroneously as perseverative rear panel pushes when
it was really a single trial-starting response.

1.8 Randomness, pseudorandomness, drawing without
replacement

Suppose I wish to pick a series of numbers from 1 to 6.

I could pick them at random. I could do this by rolling a true die. Every time I rolled the die, I would
obtain a number from 1-6 with equal probability. The probability of obtaining a "1" would be 1/6
(approximately 0.17); the probability of obtainin a "2" would be 1/6, and so on.

If I rolled the die 100 times, I would expect to get roughly 17 ones, roughly 17 twos, roughly 17
threes, roughly 17 fours, roughly 17 fives, and roughly 17 sixes. It is possible that I would get 100
sixes—but very unlikely (the probability of this is 1.53 ´ 10–78, or one in six hundred thousand
quintillion quintillion quintillion quintillion). But it is certain that I would not get exactly the same
number of ones, twos, threes, fours, fives, and sixes (because you can't have six equal whole
numbers adding up to 100). If I rolled the die 60 times, you'd expect about 10 of each number—but
it's also pretty unlikely that I'd get exactly 10 of each number.

If I rolled the die like this, there is absolutely no way to predict the next number that will come up on
each roll.

So much for randomness.

If I want a series of 60 numbers and I want to ensure that I end up with equal numbers of ones, twos,
threes, fours, fives, and sixes, I could simply take them in a predictable order: 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6. This gives me the distribution I want (ten of each number), but
the sequence is anything but random, and is highly predictable. If you know the last number that
came up, you have an extremely good idea of what the next number would be.

So much for total predictability.

To obtain a reasonable combination of unpredictability and obtaining an overall equal distribution of
numbers, we could use a pseudorandom technique called drawing without replacement, or
draw-without-replacement, sometimes shortened to draw-w/o-replacement or just DWOR.
Imagine we would like a sequence of 60 numbers, each in the range 1-6, more or less randomly, but
ensuring that we get 10 of each number. We could write the number "1" on ten pieces of paper, the
number "2" on ten more pieces of paper, and so on. We could then put all 60 pieces of paper in a
hat, shuffle them, and draw them out in sequence, without replacing them. We'd then be guaranteed
ten of each type, but the local order would be fairly random. It would not be totally random—if we've
drawn out 10 ones, 10 twos, 9 threes, 10 fours, 10 fives, and 10 sixes, then we can be absolutely
certain that the last number out of the hat will be a 3. However, we'd have to remember the numbers
that had come out so far.

So it's impossible to have a completely random order and to guarantee a certain distribution—but

14 SameOpposite

© Cambridge University Technical Services Ltd

drawing without replacement is a good way to approximate randomness while guaranteeing a certain
distribution.

There are several ways to draw without replacement. I've just described a situation in which 10
copies of each number (1-6) are put into the hat, shuffled, and drawn individually for 60 trials. It's
possible (but again extremely unlikely!) that the first ten trials would all be ones, the next ten all
twos, and so on. If we wanted to guarantee that in every six consecutive trials we will see each
possible digit (1-6) once, we should do something different. We should write the number "1" on one
piece of paper, the number "2" on a second piece of paper, and so on, up to six pieces of paper. We
should then put the six into the hat, shuffle them, and draw them out (without replacement) for the
first six trials. We should then put the six pieces of paper back in the hat, shuffle, and repeat the
process for the next six trials, and so on. This process gives less randomness (if you know just the
first five trials in a set of six, then in principle, you can have perfect knowledge of the sixth number to
be drawn) but better control over the local distribution of numbers.

We've just seen two examples in which a list of six numbers (1, 2, 3, 4, 5, 6) are put into a hat and
drawn for 60 trials. In the first, we put ten copies of each item in the list into the hat (giving 60 pieces
of paper in total) and drew them. I call this a draw-without-replacement (DWOR) multiplier of 10.
In the second, we put one copy of each item in the list into the hat, drew them until we'd run out of
numbers (after six trials), then put them all back into the hat. I call this a DWOR multiplier of 1.

We've just seen the concept of a list of possibilities, which is multiplied by a DWOR multiplier to give
a set of options that are then drawn at random without replacement from a hat; when the hat is
empty, we restart the process.

The bigger the DWOR multiplier, the closer the DWOR technique comes to total randomness (if the
DWOR multiplier were infinitely large, they are exactly the same process). The smaller the DWOR
multiplier, the closer the technique is to total predictability.

This program offers the DWOR technique as a way of selecting possible values for various
parameters.

1.9 Results

The program always stores results in two places. One is a human-readable text file. The other is a
database. (You choose the name of this file in the main parameters dialogue box, and you can
choose the database here as well.)

1.9.1 Text-based results file

A sample results file is shown below. The configuration information is shown first; the results follow.
(There aren't very many results, because I got bored creating the file.) The results section is shown
in bold, with trial summary information followed by individual response information.

I encourage you to think of this file as a backup. The database contains all this information
and can be used to retrieve both simple and highly detailed information about a subject's
performance.

SAME/OPPOSITE SIDE REACTION TIME TASK -- SUMMARY FILE

SameOpposite v0.1 - release build compiled on Jul 6 2007 at 19:16:24

IDENTIFICATION

15SameOpposite

© Cambridge University Technical Services Ltd

Rat: xxx

Session: 2

Date/time code: 07-Jul-2007 (18:15)

Comment: (add your comment here)

Box: 0

Client computer name: EGRET

Server computer name: loopback

Summary file name: xxx-07Jul2007-1828-SameOpposite-summary.txt

Default ODBC database:

Preferred box number: 0

CONFIGURATION

Target number of trials: multiplier = : 10

 (x 2 sides x 4 wait times x 1stimulus durations = 80 trials as a target)

Max trials of all types (0=no limit) : 300

Session time limit (min) : 30

... extra time to finish current trial : 5

Task type : SAME

Use traylight? : Y

Wait time values (ms) : 0,500,1000,1500

Stimulus duration values (ms) : 200

Limited hold duration (ms) : 5000

Timeout duration (ms) : 1000

Number of pellets : 1

Pellet pulsing time (ms) : 40

Interpellet gap (ms) : 500

Input debounce time (ms) : 10

SUMMARY DATA

Started at: 07-Jul-2007 (18:30)

Finished at: 07-Jul-2007 (18:31)

TOTALS (master box)

Number of trials : 5

Number of correct responses : 1

Number of incorrect responses : 5

Number of omissions : 2

Number of 'valid' trials : 5

Number of pellets earned (total) : 2

TRIAL AND RESPONSE DATA

Rat,Box,Trial,SessionBeganAt_ms,IntendedWaitTimeMs,IntendedStimulusDurationMs,

IntendedTargetOnLeft,TrialBeganAt_ms,PleaseCentreBeganAt_ms,CentredAt_ms,

LatencyToCentre_ms,TargetOnAt_ms,TargetOffAt_ms,HeadOutOfCentreAt_ms,

HeadIntoSideHoleAt_ms,RewardedAt_ms,TimeoutBeganAt_ms,PleasePushBeganAt_ms,

RearPushAt_ms,PerseverativeCentreNosepokes,PerseverativeSideNosepokes,

PrematureCentreWithdrawals,PrematureSideNosepokes,PerseverativeRearPanelPushes,

Initiated,Centred,Waited,WithdrawnFromCentre,Responded,RespondedCorrectly,

RespondedIncorrectly,Omission,Rewarded,PunishedWithTimeout,OfferedHole,ChosenHole,

ResponseLatency_ms,ExperiencedTimeout_ms,CollectionLatency_ms

xxx,0,1,959187882,1500,1239824,0,959192758,959192758,959196124,3366,959197631,4294

967295,4294967295,959201482,4294967295,959201491,959202494,959205564,0,0,0,0,0,1,1

,1,0,1,0,1,0,0,1,3,1,3851,1003,4294967295

xxx,0,2,959187882,500,1239964,0,959205564,959205564,959208272,2708,959208779,42949

67295,4294967295,4294967295,4294967295,959213790,959214850,959224834,0,1,0,0,0,1,1

,1,0,0,0,64,1,0,1,3,-1,4294967295,1060,4294967295

16 SameOpposite

© Cambridge University Technical Services Ltd

xxx,0,3,959187882,1000,1239964,0,959224834,959224834,4294967295,4294967295,4294967

295,4294967295,4294967295,4294967295,4294967295,959229403,959230405,959232623,0,0,

0,1,0,1,0,0,0,0,0,64,0,0,1,-1,-1,4294967295,1002,4294967295

xxx,0,4,959187882,500,1239964,0,959232623,959232623,959235719,3096,959236275,42949

67295,4294967295,959239146,959239149,4294967295,959239149,959242537,0,0,0,0,0,1,1,

1,0,1,1,64,0,1,0,3,3,2871,4294967295,3388

xxx,0,5,959187882,0,1244276,0,959242537,959242537,959245375,2838,959245385,4294967

295,4294967295,4294967295,4294967295,959250395,959251402,4294967295,0,0,0,0,0,1,1,

1,0,0,0,64,1,0,1,3,-1,4294967295,1007,4294967295

Rat,Box,Trial,ResponseNum,Location,Phase,TimeAbsolute_ms,TimeInSession_ms,

TimeInTrial_ms,InterestingTime_ms,ResponseType

xxx,0,1,0,99,1,959192758,4876,0,0,1

xxx,0,1,1,2,3,959196124,8242,3366,3366,2

xxx,0,1,2,1,5,959201482,13600,8724,3851,5

xxx,0,1,3,99,2,959205564,17682,12806,4073,1

xxx,0,2,4,99,2,959205564,17682,0,0,1

xxx,0,2,5,2,3,959208272,20390,2708,2708,2

xxx,0,2,6,3,7,959213846,25964,8282,56,8

xxx,0,2,7,99,2,959224834,36952,19270,11044,1

xxx,0,3,8,99,2,959224834,36952,0,0,1

xxx,0,3,9,1,3,959229392,41510,4558,4558,9

xxx,0,3,10,99,2,959232623,44741,7789,3220,1

xxx,0,4,11,99,2,959232623,44741,0,0,1

xxx,0,4,12,2,3,959235719,47837,3096,3096,2

xxx,0,4,13,3,5,959239146,51264,6523,2871,4

xxx,0,4,14,99,1,959242537,54655,9914,3388,6

xxx,0,5,15,99,1,959242537,54655,0,0,1

xxx,0,5,16,2,3,959245375,57493,2838,2838,2

Successfully wrote to database: ODBC;DSN=SameOpposite;DBQ=D:

\Whisker\CODE\clients\rnc - cambridge\SameOpposite\SameOpposite database

(prototype).mdb;DriverId=281;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;

1.9.2 Creating a new ODBC source

What happens if you're using SameOpposite for the first time, or you're starting a new experiment,
and you need to set up a new ODBC (Open Database Connectivity) source? You should configure it
via the Whisker Database Manager (Start ® Whisker ® Database Manager), or via Control
Panel ® ODBC [in Windows 2000, Start ® Settings ® Control Panel ® Adminstrative Tools ®
Data Sources (ODBC)]. This section shows you various ways to achieve this.

Remember: you shouldn't use the supplied database without making a copy for yourself. (It
will work, but if you ever uninstalled or reinstalled MonkeyCantab, this file might be replaced or lost.
It is much safer to make your own copy and set up ODBC to use your copy.)

The procedure is:
1. Make a copy of the supplied database to store your data in.
2. Register your copy with ODBC.

The simplest way is to run the Whisker Database Manager:

17SameOpposite

© Cambridge University Technical Services Ltd

You'll see the Database Manager:

18 SameOpposite

© Cambridge University Technical Services Ltd

You can use this program to CREATE (COPY) AND REGISTER a database. Or you can COPY the
supplied database and REGISTER your copy with ODBC separately. For full details of the Whisker
Database Manager, see the Whisker Help (Auxiliary Programs / Whisker Database Manager).

You can also do the whole thing by hand.

STEP 1.

First, make a copy of the supplied database to store your data in. Copy the supplied database:

19SameOpposite

© Cambridge University Technical Services Ltd

to your own:

STEP 2.

Now, having already made a working copy of the prototype database supplied with the task, as
described above, set your copy up as an ODBC source as follows.

Choose Control Panel ® ODBC [in Windows 2000, Control Panel ® Adminstrative Tools ®
Data Sources (ODBC), or the equivalent for your version of Windows:

20 SameOpposite

© Cambridge University Technical Services Ltd

You'll see this:

21SameOpposite

© Cambridge University Technical Services Ltd

Click Add.

Alternatively, you can get to the same point from SameOpposite itself. Click Pick from the
Parameters dialogue:

22 SameOpposite

© Cambridge University Technical Services Ltd

You'll see this:

23SameOpposite

© Cambridge University Technical Services Ltd

Click New.

However you got here, you'll see something like this:

Choose a User or System data source. "User" databases are seen by people logged in as the
current user. "System" databases are seen by anybody logged on to this computer. User is
probably more sensible. Click Next.

24 SameOpposite

© Cambridge University Technical Services Ltd

Choose your database driver. You probably want one that's in your language, and the supplied
database is in Microsoft Access format (although MonkeyCantab itself will store data in any suitable
ODBC-compatible database that has the right table and field names). Click Next.

Click Finish. You'll see this:

25SameOpposite

© Cambridge University Technical Services Ltd

You should fill in the Data Source Name (no spaces) and the description, and Select a
database. When you click Select, this dialogue box appears:

Choose your database here and click OK. Your ODBC data source fields should now all be set up:

26 SameOpposite

© Cambridge University Technical Services Ltd

Click OK. You will be returned to the ODBC selection screen with your new data source now
available.

1.9.3 Using the Microsoft Access database for SameOpposite

Remember: you shouldn't use the supplied database without making a copy for yourself. (It
will work, but if you ever uninstalled or reinstalled MonkeyCantab, this file might be replaced or lost.
It is much safer to make your own copy and set up ODBC to use your copy. See Creating a new
ODBC source.)

When supplied, the database is called "SameOpposite database (sample).mdb". Make a copy
before using it!

You need Microsoft Access (97 or higher) to use this database. Sorry about that.

When you open the database, it looks like this:

27SameOpposite

© Cambridge University Technical Services Ltd

The programe will store its results here. The table called "INFO: About the tables..." contains a
description of each table (double-click it, or click it and click Open, to see the descriptions).. Click a
table and click Design to view a list of all the fields. Here, for example, is the design view for the
SameOpposite_TrialData table (which stores summary results for each trial):

28 SameOpposite

© Cambridge University Technical Services Ltd

Don't modify anything in Design view unless you know what you're doing!

If you close the Design view and click Open instead, you see the contents of this table. Here is the
contents of the SameOpposite_TrialData table. I entered some sample results into this table by
running the program and pretending to be a rat for a few trials.

Feel free to explore the tables.

When you want to extract data for analysis, you may want to create queries to do so. (Queries are
listed in the "Queries" section of the main database screen.) Queries can be created using Access's

29SameOpposite

© Cambridge University Technical Services Ltd

visual query design system, or using the language SQL (Structured Query Language). A little on
relational database principles and SQL follows.

1.9.4 Relational databases in general

I have found the most useful way to store data is in a relational database, often called a
relational database management system (RDBMS). A relational database stores data in tables,
which are made up of fields and records:

A table: five fields:

Date Rat NumResponses NumStimuli NumReinforcements

one record: 17/2/00 12:29:00 M4 56 5 1

another: 17/2/00 14:37:06 M5 437 43 8

… and so on 17/2/00 12:54:00 M4 263 26 5

The driving principle behind a relational database is this: never duplicate data. Let's say our rats
came from two groups, Sham and Lesion. If we wanted to record this in the database, so we could
analyse data by group, we could store it like this:

Table BigData

Date Rat Group NumResponses NumStimuli NumReinforcements

17/2/00 12:29:00 M4 sham 56 5 1

17/2/00 14:37:06 M5 lesion 437 43 8

17/2/00 12:54:00 M4 sham 263 26 5

However, this introduces two problems. Firstly, it generates very large tables. Secondly, and more
importantly, it is unclear what to do if the data is inconsistent – let's say the underlined 'sham' was
changed to 'lesion' by mistake. The database would then not know whether rat M4 was in the
Sham or Lesion group – there would be entries for both. The solution to both problems is to create
two tables, linked on the smallest possible unit of information (in this example, the rat name):

Table Responses

Date Rat NumResponses NumStimuli NumReinforcements

17/2/00 12:29:00 M4 56 5 1

17/2/00 14:37:06 M5 437 43 8

17/2/00 12:54:00 M4 263 26 5

Table Groups

Rat Group

M4 sham

M5 lesion

By using the rat name as a key (also known as a foreign key), the database can link the two
tables together whenever we want to know how many responses the two groups made on
average.

When we want to find out that sort of information, we query the database, specifying how we
want to see the data. We could, for example, obtain the following (ignoring a glaring scientific
error!):

Query AverageByGroups

30 SameOpposite

© Cambridge University Technical Services Ltd

Group NumberOfSubjects MeanNumResponses MeanNumStimuli MeanNumReinforcements

sham 2 159.5 15.5 3

lesion 1 437 43 8

Summary of database principles

So relational databases split up the data (which should be entered in well-designed tables without
any duplication of information) from queries that look at the data in an infinite variety of ways.

A concrete example: Microsoft Access 97

Microsoft Access 97 is a commonly-used relational database for PCs. It isn't perfect, by a long
shot, but I've found it good enough. It supports structured query language (SQL) for designing
queries; this is a powerful quasi-English language. For example, the query shown above would be
written in SQL like this:

SELECT group,
 count(*) as NumberOfRats,
 avg(NumResponses) as MeanNumResponses,
 avg(NumStimuli) as MeanNumStimuli,
 avg(NumReinforcements) as MeanNumReinforcements
FROM responses, groups
WHERE responses.rat = groups.rat
GROUP BY group
;

If you find all this a bit cryptic, Access also provides a graphical interface for designing queries.

Getting data out of a database

Given a well-designed database, you should be able to get the data out in any conceivable way.
The size of this manual doesn't permit a detailed look at relational database design or queries, but
there are abundant sources. If you use Microsoft Access, there's the help system, but I also
recommend Viescas JL (1997), Running Microsoft Access 97, Microsoft Press. Beyond that
there is a whole field of database design.

Tip

I operate on the principle that any view of the data is achievable. If the graphical query design can't do it, you can
use SQL. If SQL can't do it alone, you can use Visual Basic to augment it. If all that fails (and it hasn't failed me
yet) you can always re-export the data and use a general-purpose programming language to analyse it. If the data's
there, you can get at it.

One thing is worth noting: modern statistical packages (e.g. SPSS, http://www.spss.com/) are starting
to support the ODBC standard for exchanging information with databases. You can set up
database queries to create views of the data that your stats packages can use, then set up
sequences of ODBC capture, analysis and graphical presentation in your stats package. Then
whenever you import new data, you can run the entire analysis in a matter of seconds. If you
handle large volumes of data, it easily repays the initial effort.

http://www.spss.com/

31SameOpposite

© Cambridge University Technical Services Ltd

1.9.5 Database structure

This is the structure of the SameOpposite database:

SameOpposite32

© Cambridge University Technical Services Ltd

Index

- S -
SameOpposite

about 2

database structure 31

draw-without-replacement technique 13

multiple boxes 5

parameters 10

pseudorandomness versus randomness 13

randomness versus pseudorandomness 13

relational databases 29

required devices 3

results 14

running multiple boxes 5

setting up an ODBC source 16

task design 5

text-based results file 14

trial details 7

trial overview 5

using 4

using the results database 26

	SameOpposite
	About SameOpposite
	Required devices
	Using the task
	Running multiple boxes
	Task design and trial overview
	Trial details
	Parameters
	Randomness, pseudorandomness, drawing without replacement
	Results
	Text-based results file
	Creating a new ODBC source
	Using the Microsoft Access database for SameOpposite
	Relational databases in general
	Database structure

